Cargando…
The gut-brain axis mediates bacterial driven modulation of reward signaling
OBJECTIVE: Our goal is to investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. METHODS: Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF)...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372379/ https://www.ncbi.nlm.nih.gov/pubmed/37380023 http://dx.doi.org/10.1016/j.molmet.2023.101764 |
_version_ | 1785078361996918784 |
---|---|
author | Kim, Jiyoung S. Williams, Kevin C. Kirkland, Rebecca A. Schade, Ruth Freeman, Kimberly G. Cawthon, Carolina R. Rautmann, Allison W. Smith, Jessica M. Edwards, Gaylen L. Glenn, Travis C. Holmes, Philip V. de Lartigue, Guillaume de La Serre, Claire B. |
author_facet | Kim, Jiyoung S. Williams, Kevin C. Kirkland, Rebecca A. Schade, Ruth Freeman, Kimberly G. Cawthon, Carolina R. Rautmann, Allison W. Smith, Jessica M. Edwards, Gaylen L. Glenn, Travis C. Holmes, Philip V. de Lartigue, Guillaume de La Serre, Claire B. |
author_sort | Kim, Jiyoung S. |
collection | PubMed |
description | OBJECTIVE: Our goal is to investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. METHODS: Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF) fed rats. RESULTS: Following colonization, ConvHF rats consumed significantly more food than ConvLF animals. ConvHF rats displayed lower feeding-induced extracellular DOPAC levels (a metabolite of dopamine) in the Nucleus Accumbens (NAc) as well as reduced motivation for HF foods compared to ConvLF rats. Dopamine receptor 2 (DDR2) expression levels in the NAc were also significantly lower in ConvHF animals. Similar deficits were observed in conventionally raised HF fed rats, showing that diet-driven alteration in reward can be initiated via microbiota. Selective gut to brain deafferentation restored DOPAC levels, DRD2 expression, and motivational drive in ConvHF rats. CONCLUSIONS: We concluded from these data that a HF-type microbiota is sufficient to alter appetitive feeding behavior and that bacteria to reward communication is mediated by the vagus nerve. |
format | Online Article Text |
id | pubmed-10372379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-103723792023-07-28 The gut-brain axis mediates bacterial driven modulation of reward signaling Kim, Jiyoung S. Williams, Kevin C. Kirkland, Rebecca A. Schade, Ruth Freeman, Kimberly G. Cawthon, Carolina R. Rautmann, Allison W. Smith, Jessica M. Edwards, Gaylen L. Glenn, Travis C. Holmes, Philip V. de Lartigue, Guillaume de La Serre, Claire B. Mol Metab Original Article OBJECTIVE: Our goal is to investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. METHODS: Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF) fed rats. RESULTS: Following colonization, ConvHF rats consumed significantly more food than ConvLF animals. ConvHF rats displayed lower feeding-induced extracellular DOPAC levels (a metabolite of dopamine) in the Nucleus Accumbens (NAc) as well as reduced motivation for HF foods compared to ConvLF rats. Dopamine receptor 2 (DDR2) expression levels in the NAc were also significantly lower in ConvHF animals. Similar deficits were observed in conventionally raised HF fed rats, showing that diet-driven alteration in reward can be initiated via microbiota. Selective gut to brain deafferentation restored DOPAC levels, DRD2 expression, and motivational drive in ConvHF rats. CONCLUSIONS: We concluded from these data that a HF-type microbiota is sufficient to alter appetitive feeding behavior and that bacteria to reward communication is mediated by the vagus nerve. Elsevier 2023-06-26 /pmc/articles/PMC10372379/ /pubmed/37380023 http://dx.doi.org/10.1016/j.molmet.2023.101764 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Article Kim, Jiyoung S. Williams, Kevin C. Kirkland, Rebecca A. Schade, Ruth Freeman, Kimberly G. Cawthon, Carolina R. Rautmann, Allison W. Smith, Jessica M. Edwards, Gaylen L. Glenn, Travis C. Holmes, Philip V. de Lartigue, Guillaume de La Serre, Claire B. The gut-brain axis mediates bacterial driven modulation of reward signaling |
title | The gut-brain axis mediates bacterial driven modulation of reward signaling |
title_full | The gut-brain axis mediates bacterial driven modulation of reward signaling |
title_fullStr | The gut-brain axis mediates bacterial driven modulation of reward signaling |
title_full_unstemmed | The gut-brain axis mediates bacterial driven modulation of reward signaling |
title_short | The gut-brain axis mediates bacterial driven modulation of reward signaling |
title_sort | gut-brain axis mediates bacterial driven modulation of reward signaling |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372379/ https://www.ncbi.nlm.nih.gov/pubmed/37380023 http://dx.doi.org/10.1016/j.molmet.2023.101764 |
work_keys_str_mv | AT kimjiyoungs thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT williamskevinc thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT kirklandrebeccaa thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT schaderuth thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT freemankimberlyg thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT cawthoncarolinar thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT rautmannallisonw thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT smithjessicam thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT edwardsgaylenl thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT glenntravisc thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT holmesphilipv thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT delartigueguillaume thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT delaserreclaireb thegutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT kimjiyoungs gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT williamskevinc gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT kirklandrebeccaa gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT schaderuth gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT freemankimberlyg gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT cawthoncarolinar gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT rautmannallisonw gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT smithjessicam gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT edwardsgaylenl gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT glenntravisc gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT holmesphilipv gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT delartigueguillaume gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling AT delaserreclaireb gutbrainaxismediatesbacterialdrivenmodulationofrewardsignaling |