Cargando…

MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodiu...

Descripción completa

Detalles Bibliográficos
Autores principales: Heiland, Mona, Connolly, Niamh M. C., Mamad, Omar, Nguyen, Ngoc T., Kesavan, Jaideep C., Langa, Elena, Fanning, Kevin, Sanfeliu, Albert, Yan, Yan, Su, Junyi, Venø, Morten T., Costard, Lara S., Neubert, Valentin, Engel, Tobias, Hill, Thomas D. M., Freiman, Thomas M., Mahesh, Arun, Tiwari, Vijay K., Rosenow, Felix, Bauer, Sebastian, Kjems, Jørgen, Morris, Gareth, Henshall, David C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372546/
https://www.ncbi.nlm.nih.gov/pubmed/37463203
http://dx.doi.org/10.1073/pnas.2216658120
_version_ 1785078393757237248
author Heiland, Mona
Connolly, Niamh M. C.
Mamad, Omar
Nguyen, Ngoc T.
Kesavan, Jaideep C.
Langa, Elena
Fanning, Kevin
Sanfeliu, Albert
Yan, Yan
Su, Junyi
Venø, Morten T.
Costard, Lara S.
Neubert, Valentin
Engel, Tobias
Hill, Thomas D. M.
Freiman, Thomas M.
Mahesh, Arun
Tiwari, Vijay K.
Rosenow, Felix
Bauer, Sebastian
Kjems, Jørgen
Morris, Gareth
Henshall, David C.
author_facet Heiland, Mona
Connolly, Niamh M. C.
Mamad, Omar
Nguyen, Ngoc T.
Kesavan, Jaideep C.
Langa, Elena
Fanning, Kevin
Sanfeliu, Albert
Yan, Yan
Su, Junyi
Venø, Morten T.
Costard, Lara S.
Neubert, Valentin
Engel, Tobias
Hill, Thomas D. M.
Freiman, Thomas M.
Mahesh, Arun
Tiwari, Vijay K.
Rosenow, Felix
Bauer, Sebastian
Kjems, Jørgen
Morris, Gareth
Henshall, David C.
author_sort Heiland, Mona
collection PubMed
description There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target—miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.
format Online
Article
Text
id pubmed-10372546
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-103725462023-07-28 MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control Heiland, Mona Connolly, Niamh M. C. Mamad, Omar Nguyen, Ngoc T. Kesavan, Jaideep C. Langa, Elena Fanning, Kevin Sanfeliu, Albert Yan, Yan Su, Junyi Venø, Morten T. Costard, Lara S. Neubert, Valentin Engel, Tobias Hill, Thomas D. M. Freiman, Thomas M. Mahesh, Arun Tiwari, Vijay K. Rosenow, Felix Bauer, Sebastian Kjems, Jørgen Morris, Gareth Henshall, David C. Proc Natl Acad Sci U S A Biological Sciences There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target—miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy. National Academy of Sciences 2023-07-18 2023-07-25 /pmc/articles/PMC10372546/ /pubmed/37463203 http://dx.doi.org/10.1073/pnas.2216658120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Heiland, Mona
Connolly, Niamh M. C.
Mamad, Omar
Nguyen, Ngoc T.
Kesavan, Jaideep C.
Langa, Elena
Fanning, Kevin
Sanfeliu, Albert
Yan, Yan
Su, Junyi
Venø, Morten T.
Costard, Lara S.
Neubert, Valentin
Engel, Tobias
Hill, Thomas D. M.
Freiman, Thomas M.
Mahesh, Arun
Tiwari, Vijay K.
Rosenow, Felix
Bauer, Sebastian
Kjems, Jørgen
Morris, Gareth
Henshall, David C.
MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control
title MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control
title_full MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control
title_fullStr MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control
title_full_unstemmed MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control
title_short MicroRNA-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control
title_sort microrna-335-5p suppresses voltage-gated sodium channel expression and may be a target for seizure control
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372546/
https://www.ncbi.nlm.nih.gov/pubmed/37463203
http://dx.doi.org/10.1073/pnas.2216658120
work_keys_str_mv AT heilandmona microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT connollyniamhmc microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT mamadomar microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT nguyenngoct microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT kesavanjaideepc microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT langaelena microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT fanningkevin microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT sanfeliualbert microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT yanyan microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT sujunyi microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT venømortent microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT costardlaras microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT neubertvalentin microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT engeltobias microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT hillthomasdm microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT freimanthomasm microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT mahesharun microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT tiwarivijayk microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT rosenowfelix microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT bauersebastian microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT kjemsjørgen microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT morrisgareth microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol
AT henshalldavidc microrna3355psuppressesvoltagegatedsodiumchannelexpressionandmaybeatargetforseizurecontrol