Cargando…
Predicting wildfires in Algerian forests using machine learning models
Algeria is one of the Maghreb countries most affected by wildfires. The economic, environmental, and societal consequences of these fires can last several years after the wildfire. Often, it is possible to avoid such disasters if the detection of the outbreak of fire is fast enough, reliable, and ea...
Autor principal: | Zaidi, Abdelhamid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372657/ https://www.ncbi.nlm.nih.gov/pubmed/37519679 http://dx.doi.org/10.1016/j.heliyon.2023.e18064 |
Ejemplares similares
-
Machine Learning Methods and Synthetic Data Generation to Predict Large Wildfires
por: Pérez-Porras, Fernando-Juan, et al.
Publicado: (2021) -
Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range
por: Sherriff, Rosemary L., et al.
Publicado: (2014) -
Smouldering wildfires in peatlands, forests and the arctic: Challenges and perspectives
por: Rein, Guillermo, et al.
Publicado: (2021) -
Effects of forest wildfire on inner-Alpine bird community dynamics
por: Rey, Livio, et al.
Publicado: (2019) -
Improving Neural Machine Translation for Low Resource Algerian Dialect by Transductive Transfer Learning Strategy
por: Slim, Amel, et al.
Publicado: (2022)