Cargando…
Reducing Bias in Estimates of Per Protocol Treatment Effects: A Secondary Analysis of a Randomized Clinical Trial
This secondary analysis of a randomized clinical trial evaluates ways of reducing bias in estimates of per protocol treatment effects.
Autores principales: | Cole, Stephen R., Edwards, Jessie K., Zivich, Paul N., Shook-Sa, Bonnie E., Hudgens, Michael G., Stringer, Jeffrey S. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372700/ https://www.ncbi.nlm.nih.gov/pubmed/37494045 http://dx.doi.org/10.1001/jamanetworkopen.2023.25907 |
Ejemplares similares
-
Interval-cohort designs and bias in the estimation of per-protocol effects: a simulation study
por: Young, Jessica G., et al.
Publicado: (2019) -
Use of Machine Learning to Estimate the Per-Protocol Effect of Low-Dose Aspirin on Pregnancy Outcomes: A Secondary Analysis of a Randomized Clinical Trial
por: Zhong, Yongqi, et al.
Publicado: (2022) -
Reducing the bias of estimates of genotype by environment interactions in random regression sire models
por: Lillehammer, Marie, et al.
Publicado: (2009) -
Estimating and interpreting secondary attack risk: Binomial considered biased
por: Sharker, Yushuf, et al.
Publicado: (2021) -
Crowd control: Reducing individual estimation bias by sharing biased social information
por: Jayles, Bertrand, et al.
Publicado: (2021)