Cargando…
Evaluation of deep learning and convolutional neural network algorithms accuracy for detecting and predicting anatomical landmarks on 2D lateral cephalometric images: A systematic review and meta-analysis
INTRODUCTION: Cephalometry is the study of skull measurements for clinical evaluation, diagnosis, and surgical planning. Machine learning (ML) algorithms have been used to accurately identify cephalometric landmarks and detect irregularities related to orthodontics and dentistry. ML-based cephalomet...
Autores principales: | Londono, Jimmy, Ghasemi, Shohreh, Hussain Shah, Altaf, Fahimipour, Amir, Ghadimi, Niloofar, Hashemi, Sara, Khurshid, Zohaib, Dashti, Mahmood |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373073/ https://www.ncbi.nlm.nih.gov/pubmed/37520606 http://dx.doi.org/10.1016/j.sdentj.2023.05.014 |
Ejemplares similares
-
Prevalence of malocclusion in Turkish children and adolescents: A systematic review and meta‐analysis
por: Londono, Jimmy, et al.
Publicado: (2023) -
Onset of Mucormycosis in Patients with COVID-19: A Systematic Review on Patients' Characteristics
por: Ghasemi, Shohreh, et al.
Publicado: (2022) -
Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks
por: Lee, Jeong-Hoon, et al.
Publicado: (2020) -
Automatic Cephalometric Landmark Identification System Based on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images
por: Kim, Min-Jung, et al.
Publicado: (2021) -
Influence of growth structures and fixed appliances on automated cephalometric landmark recognition with a customized convolutional neural network
por: Popova, Teodora, et al.
Publicado: (2023)