Cargando…
Corn Silk Polysaccharides with Different Carboxyl Contents Reduce the Oxidative Damage of Renal Epithelial Cells by Inhibiting Endocytosis of Nano-calcium Oxalate Crystals
[Image: see text] Objective: Renal epithelial cell injury and cell–crystal interaction are closely related to kidney stone formation. Methods: This study aims to explore the inhibition of endocytosis of nano-sized calcium oxalate monohydrate (nano-COM) crystals and the cell protection of corn silk p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373179/ https://www.ncbi.nlm.nih.gov/pubmed/37521646 http://dx.doi.org/10.1021/acsomega.3c01306 |
Sumario: | [Image: see text] Objective: Renal epithelial cell injury and cell–crystal interaction are closely related to kidney stone formation. Methods: This study aims to explore the inhibition of endocytosis of nano-sized calcium oxalate monohydrate (nano-COM) crystals and the cell protection of corn silk polysaccharides (CCSPs) with different carboxyl contents (3.92, 7.75, 12.90, and 16.38%). The nano-COM crystals protected or unprotected by CCSPs were co-cultured with human renal proximal tubular epithelial cells (HK-2), and then the changes in the endocytosis of nano-COM and cell biochemical indicators were detected. Results: CCSPs could inhibit the endocytosis of nano-COM by HK-2 cells and reduce the accumulation of nano-COM in the cells. Under the protection of CCSPs, cell morphology is restored, intracellular superoxide dismutase levels are increased, lipid peroxidation product malondialdehyde release is decreased, and mitochondrial membrane potential and lysosomal integrity are increased. The release of Ca(2+) ions in the cell, the level of cell autophagy, and the rate of cell apoptosis and necrosis are also reduced. CCSPs with higher carboxyl content have better cell protection abilities. Conclusion: CCSPs could inhibit the endocytosis of nano-COM crystals and reduce cell oxidative damage. CCSP3, with the highest carboxyl content, shows the best biological activity. |
---|