Cargando…
Medical prediction from missing data with max-minus negative regularized dropout
Missing data is a naturally common problem faced in medical research. Imputation is a widely used technique to alleviate this problem. Unfortunately, the inherent uncertainty of imputation would make the model overfit the observed data distribution, which has a negative impact on the model generaliz...
Autores principales: | Hu, Lvhui, Cheng, Xiaoen, Wen, Chuanbiao, Ren, Yulan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373302/ https://www.ncbi.nlm.nih.gov/pubmed/37521692 http://dx.doi.org/10.3389/fnins.2023.1221970 |
Ejemplares similares
-
A bibliometric analysis and visualization of medical data mining research
por: Hu, Yuanzhang, et al.
Publicado: (2020) -
Impute the missing data using retrieved dropouts
por: Wang, Shuai, et al.
Publicado: (2022) -
Voltage slope guided learning in spiking neural networks
por: Hu, Lvhui, et al.
Publicado: (2022) -
Deep learning for irregularly and regularly missing data reconstruction
por: Chai, Xintao, et al.
Publicado: (2020) -
Hybridized sine cosine algorithm with convolutional neural networks dropout regularization application
por: Bacanin, Nebojsa, et al.
Publicado: (2022)