Cargando…
In-silico activity prediction and docking studies of some flavonol derivatives as anti-prostate cancer agents based on Monte Carlo optimization
The QSAR models are employed to predict the anti-proliferative activity of 81 derivatives of flavonol against prostate cancer using the Monte Carlo algorithm based on the index of ideality of correlation (IIC) criterion. CORAL software is employed to design the QSAR models. The molecular structures...
Autores principales: | Tajiani, Faezeh, Ahmadi, Shahin, Lotfi, Shahram, Kumar, Parvin, Almasirad, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373329/ https://www.ncbi.nlm.nih.gov/pubmed/37496005 http://dx.doi.org/10.1186/s13065-023-00999-y |
Ejemplares similares
-
Ecotoxicological prediction of organic chemicals toward Pseudokirchneriella subcapitata by Monte Carlo approach
por: Lotfi, Shahram, et al.
Publicado: (2022) -
The Monte Carlo approach to model and predict the melting point of imidazolium ionic liquids using hybrid optimal descriptors
por: Lotfi, Shahram, et al.
Publicado: (2021) -
Correction: Ecotoxicological prediction of organic chemicals toward Pseudokirchneriella subcapitata by Monte Carlo approach
por: Lotfi, Shahram, et al.
Publicado: (2022) -
In Silico Generation of Peptides by Replica Exchange Monte Carlo: Docking-Based Optimization of Maltose-Binding-Protein Ligands
por: Russo, Anna, et al.
Publicado: (2015) -
QSAR and molecular docking studies of isatin and indole derivatives as SARS 3CL(pro) inhibitors
por: Soleymani, Niousha, et al.
Publicado: (2023)