Cargando…

HSV-1 exploits host heterochromatin for nuclear egress

Herpes simplex virus (HSV-1) progeny form in the nucleus and exit to successfully infect other cells. Newly formed capsids navigate complex chromatin architecture to reach the inner nuclear membrane (INM) and egress. Here, we demonstrate by transmission electron microscopy (TEM) that HSV-1 capsids t...

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis, Hannah C., Kelnhofer-Millevolte, Laurel E., Brinkley, Mia R., Arbach, Hannah E., Arnold, Edward A., Sanders, Saskia, Bosse, Jens B., Ramachandran, Srinivas, Avgousti, Daphne C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373338/
https://www.ncbi.nlm.nih.gov/pubmed/37516914
http://dx.doi.org/10.1083/jcb.202304106
_version_ 1785078547743768576
author Lewis, Hannah C.
Kelnhofer-Millevolte, Laurel E.
Brinkley, Mia R.
Arbach, Hannah E.
Arnold, Edward A.
Sanders, Saskia
Bosse, Jens B.
Ramachandran, Srinivas
Avgousti, Daphne C.
author_facet Lewis, Hannah C.
Kelnhofer-Millevolte, Laurel E.
Brinkley, Mia R.
Arbach, Hannah E.
Arnold, Edward A.
Sanders, Saskia
Bosse, Jens B.
Ramachandran, Srinivas
Avgousti, Daphne C.
author_sort Lewis, Hannah C.
collection PubMed
description Herpes simplex virus (HSV-1) progeny form in the nucleus and exit to successfully infect other cells. Newly formed capsids navigate complex chromatin architecture to reach the inner nuclear membrane (INM) and egress. Here, we demonstrate by transmission electron microscopy (TEM) that HSV-1 capsids traverse heterochromatin associated with trimethylation on histone H3 lysine 27 (H3K27me3) and the histone variant macroH2A1. Through chromatin profiling during infection, we revealed global redistribution of these marks whereby massive host genomic regions bound by macroH2A1 and H3K27me3 correlate with decreased host transcription in active compartments. We found that the loss of these markers resulted in significantly lower viral titers but did not impact viral genome or protein accumulation. Strikingly, we discovered that loss of macroH2A1 or H3K27me3 resulted in nuclear trapping of capsids. Finally, by live-capsid tracking, we quantified this decreased capsid movement. Thus, our work demonstrates that HSV-1 takes advantage of the dynamic nature of host heterochromatin formation during infection for efficient nuclear egress.
format Online
Article
Text
id pubmed-10373338
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-103733382023-07-28 HSV-1 exploits host heterochromatin for nuclear egress Lewis, Hannah C. Kelnhofer-Millevolte, Laurel E. Brinkley, Mia R. Arbach, Hannah E. Arnold, Edward A. Sanders, Saskia Bosse, Jens B. Ramachandran, Srinivas Avgousti, Daphne C. J Cell Biol Article Herpes simplex virus (HSV-1) progeny form in the nucleus and exit to successfully infect other cells. Newly formed capsids navigate complex chromatin architecture to reach the inner nuclear membrane (INM) and egress. Here, we demonstrate by transmission electron microscopy (TEM) that HSV-1 capsids traverse heterochromatin associated with trimethylation on histone H3 lysine 27 (H3K27me3) and the histone variant macroH2A1. Through chromatin profiling during infection, we revealed global redistribution of these marks whereby massive host genomic regions bound by macroH2A1 and H3K27me3 correlate with decreased host transcription in active compartments. We found that the loss of these markers resulted in significantly lower viral titers but did not impact viral genome or protein accumulation. Strikingly, we discovered that loss of macroH2A1 or H3K27me3 resulted in nuclear trapping of capsids. Finally, by live-capsid tracking, we quantified this decreased capsid movement. Thus, our work demonstrates that HSV-1 takes advantage of the dynamic nature of host heterochromatin formation during infection for efficient nuclear egress. Rockefeller University Press 2023-07-26 /pmc/articles/PMC10373338/ /pubmed/37516914 http://dx.doi.org/10.1083/jcb.202304106 Text en © 2023 Lewis et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lewis, Hannah C.
Kelnhofer-Millevolte, Laurel E.
Brinkley, Mia R.
Arbach, Hannah E.
Arnold, Edward A.
Sanders, Saskia
Bosse, Jens B.
Ramachandran, Srinivas
Avgousti, Daphne C.
HSV-1 exploits host heterochromatin for nuclear egress
title HSV-1 exploits host heterochromatin for nuclear egress
title_full HSV-1 exploits host heterochromatin for nuclear egress
title_fullStr HSV-1 exploits host heterochromatin for nuclear egress
title_full_unstemmed HSV-1 exploits host heterochromatin for nuclear egress
title_short HSV-1 exploits host heterochromatin for nuclear egress
title_sort hsv-1 exploits host heterochromatin for nuclear egress
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373338/
https://www.ncbi.nlm.nih.gov/pubmed/37516914
http://dx.doi.org/10.1083/jcb.202304106
work_keys_str_mv AT lewishannahc hsv1exploitshostheterochromatinfornuclearegress
AT kelnhofermillevoltelaurele hsv1exploitshostheterochromatinfornuclearegress
AT brinkleymiar hsv1exploitshostheterochromatinfornuclearegress
AT arbachhannahe hsv1exploitshostheterochromatinfornuclearegress
AT arnoldedwarda hsv1exploitshostheterochromatinfornuclearegress
AT sanderssaskia hsv1exploitshostheterochromatinfornuclearegress
AT bossejensb hsv1exploitshostheterochromatinfornuclearegress
AT ramachandransrinivas hsv1exploitshostheterochromatinfornuclearegress
AT avgoustidaphnec hsv1exploitshostheterochromatinfornuclearegress