Cargando…
GDCL-NcDA: identifying non-coding RNA-disease associations via contrastive learning between deep graph learning and deep matrix factorization
Non-coding RNAs (ncRNAs) draw much attention from studies widely in recent years because they play vital roles in life activities. As a good complement to wet experiment methods, computational prediction methods can greatly save experimental costs. However, high false-negative data and insufficient...
Autores principales: | Ai, Ning, Liang, Yong, Yuan, Haoliang, Ouyang, Dong, Xie, Shengli, Liu, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373414/ https://www.ncbi.nlm.nih.gov/pubmed/37501127 http://dx.doi.org/10.1186/s12864-023-09501-3 |
Ejemplares similares
-
Deep graph level anomaly detection with contrastive learning
por: Luo, Xuexiong, et al.
Publicado: (2022) -
Deep Graph Learning for Circuit Deobfuscation
por: Chen, Zhiqian, et al.
Publicado: (2021) -
Deep single-cell RNA-seq data clustering with graph prototypical contrastive learning
por: Lee, Junseok, et al.
Publicado: (2023) -
DeepNC: a framework for drug-target interaction prediction with graph neural networks
por: Tran, Huu Ngoc Tran, et al.
Publicado: (2022) -
WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing
por: Liu, Ruozhu, et al.
Publicado: (2023)