Cargando…
Reconstructing Kernel-Based Machine Learning Force Fields with Superlinear Convergence
[Image: see text] Kernel machines have sustained continuous progress in the field of quantum chemistry. In particular, they have proven to be successful in the low-data regime of force field reconstruction. This is because many equivariances and invariances due to physical symmetries can be incorpor...
Autores principales: | Blücher, Stefan, Müller, Klaus-Robert, Chmiela, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373489/ https://www.ncbi.nlm.nih.gov/pubmed/37156733 http://dx.doi.org/10.1021/acs.jctc.2c01304 |
Ejemplares similares
-
Algorithmic
Differentiation for Automated Modeling
of Machine Learned Force Fields
por: Schmitz, Niklas Frederik, et al.
Publicado: (2022) -
Machine Learning Force Fields
por: Unke, Oliver T., et al.
Publicado: (2021) -
Towards exact molecular dynamics simulations with machine-learned force fields
por: Chmiela, Stefan, et al.
Publicado: (2018) -
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Accurate global machine learning force fields for molecules with hundreds of atoms
por: Chmiela, Stefan, et al.
Publicado: (2023)