Cargando…
Super High-Throughput Screening of Enzyme Variants by Spectral Graph Convolutional Neural Networks
[Image: see text] Finding new enzyme variants with the desired substrate scope requires screening through a large number of potential variants. In a typical in silico enzyme engineering workflow, it is possible to scan a few thousands of variants, and gather several candidates for further screening...
Autores principales: | Ramírez-Palacios, Carlos, Marrink, Siewert J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373491/ https://www.ncbi.nlm.nih.gov/pubmed/36961994 http://dx.doi.org/10.1021/acs.jctc.2c01227 |
Ejemplares similares
-
Computation and memory optimized spectral domain convolutional neural network for throughput and energy-efficient inference
por: Rizvi, Shahriyar Masud, et al.
Publicado: (2022) -
Computational prediction of ω-transaminase selectivity by deep learning analysis of molecular dynamics trajectories
por: Ramírez-Palacios, Carlos, et al.
Publicado: (2022) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023) -
Dual graph convolutional neural network for predicting chemical networks
por: Harada, Shonosuke, et al.
Publicado: (2020)