Cargando…
Effective data sampling strategies and boundary condition constraints of physics-informed neural networks for identifying material properties in solid mechanics
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions. However, material identification is a challenging task, especially when the characteristic of the material is highly nonlinear in nature, as is common in biol...
Autores principales: | WU, W., DANEKER, M., JOLLEY, M. A., TURNER, K. T., LU, L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373631/ https://www.ncbi.nlm.nih.gov/pubmed/37501681 http://dx.doi.org/10.1007/s10483-023-2995-8 |
Ejemplares similares
-
Wave Equation Modeling via Physics-Informed Neural Networks: Models of Soft and Hard Constraints for Initial and Boundary Conditions
por: Alkhadhr, Shaikhah, et al.
Publicado: (2023) -
Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
por: Berrone, S., et al.
Publicado: (2023) -
Gravitational Constraints on a Lightlike Boundary
por: Canepa, G., et al.
Publicado: (2021) -
Modeling of Polymer Friction on Boundaries of Solids and Inside Materials
por: Zmitrowicz, Alfred
Publicado: (2021) -
Neural Decision Boundaries for Maximal Information Transmission
por: Sharpee, Tatyana, et al.
Publicado: (2007)