Cargando…
Identifying the critical state of cancers by single-sample Markov flow entropy
BACKGROUND: The progression of complex diseases sometimes undergoes a drastic critical transition, at which the biological system abruptly shifts from a relatively healthy state (before-transition stage) to a disease state (after-transition stage). Searching for such a critical transition or critica...
Autores principales: | Liu, Juntan, Tao, Yuan, Lan, Ruoqi, Zhong, Jiayuan, Liu, Rui, Chen, Pei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373650/ https://www.ncbi.nlm.nih.gov/pubmed/37520244 http://dx.doi.org/10.7717/peerj.15695 |
Ejemplares similares
-
Identifying the critical states and dynamic network biomarkers of cancers based on network entropy
por: Liu, Juntan, et al.
Publicado: (2022) -
Identifying Critical State of Complex Diseases by Single-Sample-Based Hidden Markov Model
por: Liu, Rui, et al.
Publicado: (2019) -
Identifying critical state of complex diseases by single-sample Kullback–Leibler divergence
por: Zhong, Jiayuan, et al.
Publicado: (2020) -
TRAL 2.0: Tandem Repeat Detection With Circular Profile Hidden Markov Models and Evolutionary Aligner
por: Delucchi, Matteo, et al.
Publicado: (2021) -
Identifying changes in immune cells and constructing prognostic models using immune-related genes in post-burn immunosuppression
por: Wang, Peng, et al.
Publicado: (2022)