Cargando…
Enhanced detection of severe aortic stenosis via artificial intelligence: a clinical cohort study
OBJECTIVE: We developed an artificial intelligence decision support algorithm (AI-DSA) that uses routine echocardiographic measurements to identify severe aortic stenosis (AS) phenotypes associated with high mortality. METHODS: 631 824 individuals with 1.08 million echocardiograms were randomly spil...
Autores principales: | Strange, Geoff, Stewart, Simon, Watts, Andrew, Playford, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373677/ https://www.ncbi.nlm.nih.gov/pubmed/37491129 http://dx.doi.org/10.1136/openhrt-2023-002265 |
Ejemplares similares
-
Moderate aortic stenosis: culprit or bystander?
por: Pankayatselvan, Varayini, et al.
Publicado: (2022) -
Uncovering the treatable burden of severe aortic stenosis in the UK
por: Strange, Geoffrey A, et al.
Publicado: (2022) -
Artificial intelligence-enabled phenotyping of patients with severe aortic stenosis: on the recovery of extra-aortic valve cardiac damage after transcatheter aortic valve replacement
por: Lachmann, Mark, et al.
Publicado: (2022) -
Contrast-enhanced computed tomography assessment of aortic stenosis
por: Cartlidge, Timothy RG, et al.
Publicado: (2021) -
Exercise testing in patients with asymptomatic moderate or severe aortic stenosis
por: Saeed, Sahrai, et al.
Publicado: (2018)