Cargando…
Deep learning-based diagnosis of histopathological patterns for invasive non-mucinous lung adenocarcinoma using semantic segmentation
OBJECTIVES: The application of artificial intelligence (AI) to the field of pathology has facilitated the development of digital pathology, hence, making AI-assisted diagnosis possible. Due to the variety of lung cancers and the subjectivity of manual evaluation, invasive non-mucinous lung adenocarc...
Autores principales: | Zhao, Yanli, He, Sen, Zhao, Dan, Ju, Mengwei, Zhen, Caiwei, Dong, Yujie, Zhang, Chen, Wang, Lang, Wang, Shuhao, Che, Nanying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373723/ https://www.ncbi.nlm.nih.gov/pubmed/37491086 http://dx.doi.org/10.1136/bmjopen-2022-069181 |
Ejemplares similares
-
High accuracy epidermal growth factor receptor mutation prediction via histopathological deep learning
por: Zhao, Dan, et al.
Publicado: (2023) -
Mucinous Adenocarcinoma of Gallbladder: An Incidental Finding of Acute Cholecystitis With Cholelithiasis
por: Soukhak, Fahim, et al.
Publicado: (2023) -
Duodenal Mucinous Adenocarcinoma in a Patient With Immunodeficiency: A Case Report
por: Sseruwagi, Timon, et al.
Publicado: (2023) -
Papillary Mucinous Adenocarcinoma of the Endolymphatic Sac: A Rare Middle Ear Neoplasm
por: Tahir, Muhammad, et al.
Publicado: (2021) -
Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
por: Bándi, Péter, et al.
Publicado: (2019)