Cargando…

Multiple environmental factors, but not nutrient addition, directly affect wet grassland soil microbial community structure: a mesocosm study

Nutrient addition may change soil microbial community structure, but soil microbes must simultaneously contend with other, interacting factors. We studied the effect of soil type (peat, mineral), water level (low, high), and nutrient addition (unfertilized, fertilized) on wet grassland soil microbia...

Descripción completa

Detalles Bibliográficos
Autores principales: Edwards, Keith R, Bárta, Jiří, Mastný, Jiří, Picek, Tomáš
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373907/
https://www.ncbi.nlm.nih.gov/pubmed/37355783
http://dx.doi.org/10.1093/femsec/fiad070
Descripción
Sumario:Nutrient addition may change soil microbial community structure, but soil microbes must simultaneously contend with other, interacting factors. We studied the effect of soil type (peat, mineral), water level (low, high), and nutrient addition (unfertilized, fertilized) on wet grassland soil microbial community structure in both vegetated and un-vegetated soils after five years of treatment application in a mesocosm, using Illumina sequencing of the bacterial V4 region of the small ribosomal sub-units. Soil type, water level, and plant presence significantly affected the soil microbial structure, both singly and interactively. Nutrient addition did not directly impact microbiome structure, but acted indirectly by increasing plant biomass. The abundance of possible plant growth promoting bacteria and heterotrophic bacteria indicates the importance of bacteria that promote plant growth. Based on our results, a drier and warmer future would result in nutrient-richer conditions and changes to microbial community structure and total microbial biomass and/or abundances, with wet grasslands likely switching from areas acting as C sinks to C sources.