Cargando…
Predicting lifespan-extending chemical compounds for C. elegans with machine learning and biologically interpretable features
Recently, there has been a growing interest in the development of pharmacological interventions targeting ageing, as well as in the use of machine learning for analysing ageing-related data. In this work, we use machine learning methods to analyse data from DrugAge, a database of chemical compounds...
Autores principales: | Ribeiro, Caio, Farmer, Christopher K., de Magalhães, João Pedro, Freitas, Alex A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373959/ https://www.ncbi.nlm.nih.gov/pubmed/37450404 http://dx.doi.org/10.18632/aging.204866 |
Ejemplares similares
-
Machine learning for predicting lifespan-extending chemical compounds
por: Barardo, Diogo G., et al.
Publicado: (2017) -
The C. elegans Lifespan Machine
por: Stroustrup, Nicholas, et al.
Publicado: (2013) -
Random forest classification for predicting lifespan-extending chemical compounds
por: Kapsiani, Sofia, et al.
Publicado: (2021) -
Rilmenidine extends lifespan and healthspan in Caenorhabditis elegans via a nischarin I1‐imidazoline receptor
por: Bennett, Dominic F., et al.
Publicado: (2023) -
An Engineering Approach to Extending Lifespan in C. elegans
por: Sagi, Dror, et al.
Publicado: (2012)