Cargando…
Indoor aeroallergens from American cockroaches and mites initiate atopic march via cutaneous contact in a murine model
The progression of allergic diseases from atopic dermatitis in childhood to other allergic conditions such as asthma in later life is often referred to as the atopic march. In order to study the relationship between cutaneous sensitization by aeroallergen and atopic march, we established a mouse mod...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374041/ https://www.ncbi.nlm.nih.gov/pubmed/37498896 http://dx.doi.org/10.1371/journal.pone.0289138 |
_version_ | 1785078689015267328 |
---|---|
author | Lee, Mey-Fann Chu, Yu-Wen Wu, Chi-Sheng Lee, Ming-Hao Chen, Yi-Hsing Wang, Nancy M. |
author_facet | Lee, Mey-Fann Chu, Yu-Wen Wu, Chi-Sheng Lee, Ming-Hao Chen, Yi-Hsing Wang, Nancy M. |
author_sort | Lee, Mey-Fann |
collection | PubMed |
description | The progression of allergic diseases from atopic dermatitis in childhood to other allergic conditions such as asthma in later life is often referred to as the atopic march. In order to study the relationship between cutaneous sensitization by aeroallergen and atopic march, we established a mouse model to test the hypothesis using American cockroaches and house dust mites as the model allergens. Mice were sensitized via skin with native cockroach extract (CraA) or recombinant Per a 2 and Der p 2 proteins without adjuvant. Each mouse was subjected to a total of three 1-week patching sensitizations with a 2-week interval in between each application. The resulting immunological variables in sera, scratching behavior, airway hyperresponsiveness (AHR), and pathology of skin lesions and nasal mucosa were evaluated. In mice, application of CraA, rPer a 2, and rDer p 2 aeroallergens through skin patching induced significantly high levels of both total IgE and specific IgEs. The epicutaneous sensitization after a subsequent allergen challenge showed a significant increase in scratch bouts, AHR, epidermal thickness, and eosinophil counts in the skin compared with the control mice. In addition, stimulation of murine splenocytes with allergens increased higher levels of Th2 cytokines, anti-inflammatory cytokines, and chemokines excretion. Our study provides evidence supporting that epicutaneous sensitization to aeroallergens also led to nasal and airway symptoms comparable to atopic march as described in humans. We hope this new allergy model will be useful in the development of new preventive and therapeutic strategies aimed at stopping the atopic march. |
format | Online Article Text |
id | pubmed-10374041 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-103740412023-07-28 Indoor aeroallergens from American cockroaches and mites initiate atopic march via cutaneous contact in a murine model Lee, Mey-Fann Chu, Yu-Wen Wu, Chi-Sheng Lee, Ming-Hao Chen, Yi-Hsing Wang, Nancy M. PLoS One Research Article The progression of allergic diseases from atopic dermatitis in childhood to other allergic conditions such as asthma in later life is often referred to as the atopic march. In order to study the relationship between cutaneous sensitization by aeroallergen and atopic march, we established a mouse model to test the hypothesis using American cockroaches and house dust mites as the model allergens. Mice were sensitized via skin with native cockroach extract (CraA) or recombinant Per a 2 and Der p 2 proteins without adjuvant. Each mouse was subjected to a total of three 1-week patching sensitizations with a 2-week interval in between each application. The resulting immunological variables in sera, scratching behavior, airway hyperresponsiveness (AHR), and pathology of skin lesions and nasal mucosa were evaluated. In mice, application of CraA, rPer a 2, and rDer p 2 aeroallergens through skin patching induced significantly high levels of both total IgE and specific IgEs. The epicutaneous sensitization after a subsequent allergen challenge showed a significant increase in scratch bouts, AHR, epidermal thickness, and eosinophil counts in the skin compared with the control mice. In addition, stimulation of murine splenocytes with allergens increased higher levels of Th2 cytokines, anti-inflammatory cytokines, and chemokines excretion. Our study provides evidence supporting that epicutaneous sensitization to aeroallergens also led to nasal and airway symptoms comparable to atopic march as described in humans. We hope this new allergy model will be useful in the development of new preventive and therapeutic strategies aimed at stopping the atopic march. Public Library of Science 2023-07-27 /pmc/articles/PMC10374041/ /pubmed/37498896 http://dx.doi.org/10.1371/journal.pone.0289138 Text en © 2023 Lee et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lee, Mey-Fann Chu, Yu-Wen Wu, Chi-Sheng Lee, Ming-Hao Chen, Yi-Hsing Wang, Nancy M. Indoor aeroallergens from American cockroaches and mites initiate atopic march via cutaneous contact in a murine model |
title | Indoor aeroallergens from American cockroaches and mites initiate atopic march via cutaneous contact in a murine model |
title_full | Indoor aeroallergens from American cockroaches and mites initiate atopic march via cutaneous contact in a murine model |
title_fullStr | Indoor aeroallergens from American cockroaches and mites initiate atopic march via cutaneous contact in a murine model |
title_full_unstemmed | Indoor aeroallergens from American cockroaches and mites initiate atopic march via cutaneous contact in a murine model |
title_short | Indoor aeroallergens from American cockroaches and mites initiate atopic march via cutaneous contact in a murine model |
title_sort | indoor aeroallergens from american cockroaches and mites initiate atopic march via cutaneous contact in a murine model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374041/ https://www.ncbi.nlm.nih.gov/pubmed/37498896 http://dx.doi.org/10.1371/journal.pone.0289138 |
work_keys_str_mv | AT leemeyfann indooraeroallergensfromamericancockroachesandmitesinitiateatopicmarchviacutaneouscontactinamurinemodel AT chuyuwen indooraeroallergensfromamericancockroachesandmitesinitiateatopicmarchviacutaneouscontactinamurinemodel AT wuchisheng indooraeroallergensfromamericancockroachesandmitesinitiateatopicmarchviacutaneouscontactinamurinemodel AT leeminghao indooraeroallergensfromamericancockroachesandmitesinitiateatopicmarchviacutaneouscontactinamurinemodel AT chenyihsing indooraeroallergensfromamericancockroachesandmitesinitiateatopicmarchviacutaneouscontactinamurinemodel AT wangnancym indooraeroallergensfromamericancockroachesandmitesinitiateatopicmarchviacutaneouscontactinamurinemodel |