Cargando…
Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study
Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from “bottom-up” mechanistic models to “top-down” data-driven techniques have been applied t...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374070/ https://www.ncbi.nlm.nih.gov/pubmed/37498860 http://dx.doi.org/10.1371/journal.pone.0285820 |
_version_ | 1785078696050163712 |
---|---|
author | Erdős, Balázs van Sloun, Bart Goossens, Gijs H. O’Donovan, Shauna D. de Galan, Bastiaan E. van Greevenbroek, Marleen M. J. Stehouwer, Coen D. A. Schram, Miranda T. Blaak, Ellen E. Adriaens, Michiel E. van Riel, Natal A. W. Arts, Ilja C. W. |
author_facet | Erdős, Balázs van Sloun, Bart Goossens, Gijs H. O’Donovan, Shauna D. de Galan, Bastiaan E. van Greevenbroek, Marleen M. J. Stehouwer, Coen D. A. Schram, Miranda T. Blaak, Ellen E. Adriaens, Michiel E. van Riel, Natal A. W. Arts, Ilja C. W. |
author_sort | Erdős, Balázs |
collection | PubMed |
description | Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from “bottom-up” mechanistic models to “top-down” data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored. Here, we propose a sequential combination of a mechanistic and a data-driven modeling approach to quantify individuals’ glucose and insulin responses to an oral glucose tolerance test, using cross sectional data from 2968 individuals from a large observational prospective population-based cohort, the Maastricht Study. The best predictive performance, measured by R(2) and mean squared error of prediction, was achieved with personalized mechanistic models alone. The addition of a data-driven model did not improve predictive performance. The personalized mechanistic models consistently outperformed the data-driven and the combined model approaches, demonstrating the strength and suitability of bottom-up mechanistic models in describing the dynamic glucose and insulin response to oral glucose tolerance tests. |
format | Online Article Text |
id | pubmed-10374070 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-103740702023-07-28 Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study Erdős, Balázs van Sloun, Bart Goossens, Gijs H. O’Donovan, Shauna D. de Galan, Bastiaan E. van Greevenbroek, Marleen M. J. Stehouwer, Coen D. A. Schram, Miranda T. Blaak, Ellen E. Adriaens, Michiel E. van Riel, Natal A. W. Arts, Ilja C. W. PLoS One Research Article Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from “bottom-up” mechanistic models to “top-down” data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored. Here, we propose a sequential combination of a mechanistic and a data-driven modeling approach to quantify individuals’ glucose and insulin responses to an oral glucose tolerance test, using cross sectional data from 2968 individuals from a large observational prospective population-based cohort, the Maastricht Study. The best predictive performance, measured by R(2) and mean squared error of prediction, was achieved with personalized mechanistic models alone. The addition of a data-driven model did not improve predictive performance. The personalized mechanistic models consistently outperformed the data-driven and the combined model approaches, demonstrating the strength and suitability of bottom-up mechanistic models in describing the dynamic glucose and insulin response to oral glucose tolerance tests. Public Library of Science 2023-07-27 /pmc/articles/PMC10374070/ /pubmed/37498860 http://dx.doi.org/10.1371/journal.pone.0285820 Text en © 2023 Erdős et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Erdős, Balázs van Sloun, Bart Goossens, Gijs H. O’Donovan, Shauna D. de Galan, Bastiaan E. van Greevenbroek, Marleen M. J. Stehouwer, Coen D. A. Schram, Miranda T. Blaak, Ellen E. Adriaens, Michiel E. van Riel, Natal A. W. Arts, Ilja C. W. Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study |
title | Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study |
title_full | Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study |
title_fullStr | Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study |
title_full_unstemmed | Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study |
title_short | Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study |
title_sort | quantifying postprandial glucose responses using a hybrid modeling approach: combining mechanistic and data-driven models in the maastricht study |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374070/ https://www.ncbi.nlm.nih.gov/pubmed/37498860 http://dx.doi.org/10.1371/journal.pone.0285820 |
work_keys_str_mv | AT erdosbalazs quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT vanslounbart quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT goossensgijsh quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT odonovanshaunad quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT degalanbastiaane quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT vangreevenbroekmarleenmj quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT stehouwercoenda quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT schrammirandat quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT blaakellene quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT adriaensmichiele quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT vanrielnatalaw quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy AT artsiljacw quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy |