Cargando…

Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study

Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from “bottom-up” mechanistic models to “top-down” data-driven techniques have been applied t...

Descripción completa

Detalles Bibliográficos
Autores principales: Erdős, Balázs, van Sloun, Bart, Goossens, Gijs H., O’Donovan, Shauna D., de Galan, Bastiaan E., van Greevenbroek, Marleen M. J., Stehouwer, Coen D. A., Schram, Miranda T., Blaak, Ellen E., Adriaens, Michiel E., van Riel, Natal A. W., Arts, Ilja C. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374070/
https://www.ncbi.nlm.nih.gov/pubmed/37498860
http://dx.doi.org/10.1371/journal.pone.0285820
_version_ 1785078696050163712
author Erdős, Balázs
van Sloun, Bart
Goossens, Gijs H.
O’Donovan, Shauna D.
de Galan, Bastiaan E.
van Greevenbroek, Marleen M. J.
Stehouwer, Coen D. A.
Schram, Miranda T.
Blaak, Ellen E.
Adriaens, Michiel E.
van Riel, Natal A. W.
Arts, Ilja C. W.
author_facet Erdős, Balázs
van Sloun, Bart
Goossens, Gijs H.
O’Donovan, Shauna D.
de Galan, Bastiaan E.
van Greevenbroek, Marleen M. J.
Stehouwer, Coen D. A.
Schram, Miranda T.
Blaak, Ellen E.
Adriaens, Michiel E.
van Riel, Natal A. W.
Arts, Ilja C. W.
author_sort Erdős, Balázs
collection PubMed
description Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from “bottom-up” mechanistic models to “top-down” data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored. Here, we propose a sequential combination of a mechanistic and a data-driven modeling approach to quantify individuals’ glucose and insulin responses to an oral glucose tolerance test, using cross sectional data from 2968 individuals from a large observational prospective population-based cohort, the Maastricht Study. The best predictive performance, measured by R(2) and mean squared error of prediction, was achieved with personalized mechanistic models alone. The addition of a data-driven model did not improve predictive performance. The personalized mechanistic models consistently outperformed the data-driven and the combined model approaches, demonstrating the strength and suitability of bottom-up mechanistic models in describing the dynamic glucose and insulin response to oral glucose tolerance tests.
format Online
Article
Text
id pubmed-10374070
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-103740702023-07-28 Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study Erdős, Balázs van Sloun, Bart Goossens, Gijs H. O’Donovan, Shauna D. de Galan, Bastiaan E. van Greevenbroek, Marleen M. J. Stehouwer, Coen D. A. Schram, Miranda T. Blaak, Ellen E. Adriaens, Michiel E. van Riel, Natal A. W. Arts, Ilja C. W. PLoS One Research Article Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from “bottom-up” mechanistic models to “top-down” data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored. Here, we propose a sequential combination of a mechanistic and a data-driven modeling approach to quantify individuals’ glucose and insulin responses to an oral glucose tolerance test, using cross sectional data from 2968 individuals from a large observational prospective population-based cohort, the Maastricht Study. The best predictive performance, measured by R(2) and mean squared error of prediction, was achieved with personalized mechanistic models alone. The addition of a data-driven model did not improve predictive performance. The personalized mechanistic models consistently outperformed the data-driven and the combined model approaches, demonstrating the strength and suitability of bottom-up mechanistic models in describing the dynamic glucose and insulin response to oral glucose tolerance tests. Public Library of Science 2023-07-27 /pmc/articles/PMC10374070/ /pubmed/37498860 http://dx.doi.org/10.1371/journal.pone.0285820 Text en © 2023 Erdős et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Erdős, Balázs
van Sloun, Bart
Goossens, Gijs H.
O’Donovan, Shauna D.
de Galan, Bastiaan E.
van Greevenbroek, Marleen M. J.
Stehouwer, Coen D. A.
Schram, Miranda T.
Blaak, Ellen E.
Adriaens, Michiel E.
van Riel, Natal A. W.
Arts, Ilja C. W.
Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study
title Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study
title_full Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study
title_fullStr Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study
title_full_unstemmed Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study
title_short Quantifying postprandial glucose responses using a hybrid modeling approach: Combining mechanistic and data-driven models in The Maastricht Study
title_sort quantifying postprandial glucose responses using a hybrid modeling approach: combining mechanistic and data-driven models in the maastricht study
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374070/
https://www.ncbi.nlm.nih.gov/pubmed/37498860
http://dx.doi.org/10.1371/journal.pone.0285820
work_keys_str_mv AT erdosbalazs quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT vanslounbart quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT goossensgijsh quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT odonovanshaunad quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT degalanbastiaane quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT vangreevenbroekmarleenmj quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT stehouwercoenda quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT schrammirandat quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT blaakellene quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT adriaensmichiele quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT vanrielnatalaw quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy
AT artsiljacw quantifyingpostprandialglucoseresponsesusingahybridmodelingapproachcombiningmechanisticanddatadrivenmodelsinthemaastrichtstudy