Cargando…
YOLO-plum: A high precision and real-time improved algorithm for plum recognition
Real-time, rapid, accurate, and non-destructive batch testing of fruit growth state is crucial for improving economic benefits. However, for plums, environmental variability, multi-scale, occlusion, overlapping of leaves or fruits pose significant challenges to accurate and complete labeling using m...
Autores principales: | Niu, Yupeng, Lu, Ming, Liang, Xinyun, Wu, Qianqian, Mu, Jiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374091/ https://www.ncbi.nlm.nih.gov/pubmed/37498811 http://dx.doi.org/10.1371/journal.pone.0287778 |
Ejemplares similares
-
The plum plum pickers : a novel
por: Barrio, Raymond
Publicado: (1970) -
YOLOv7-Plum: Advancing Plum Fruit Detection in Natural Environments with Deep Learning
por: Tang, Rong, et al.
Publicado: (2023) -
Biobased Polyurethane Composite Foams Reinforced with Plum Stones and Silanized Plum Stones
por: Miedzińska, Karolina, et al.
Publicado: (2021) -
Precision Detection of Dense Plums in Orchards Using the Improved YOLOv4 Model
por: Wang, Lele, et al.
Publicado: (2022) -
Trans-grafting plum pox virus resistance from transgenic plum rootstocks to apricot scions
por: Alburquerque, Nuria, et al.
Publicado: (2023)