Cargando…
W-Net: Convolutional neural network for segmenting remote sensing images by dual path semantics
In the latest research progress, deep neural networks have been revolutionized by frameworks to extract image features more accurately. In this study, we focus on an attention model that can be useful in deep neural networks and propose a simple but strong feature extraction deep network architectur...
Autores principales: | Liu, Guangjie, Wang, Qi, Zhu, Jinlong, Hong, Haotong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374094/ https://www.ncbi.nlm.nih.gov/pubmed/37498885 http://dx.doi.org/10.1371/journal.pone.0288311 |
Ejemplares similares
-
Knowledge and Geo-Object Based Graph Convolutional Network for Remote Sensing Semantic Segmentation
por: Cui, Wei, et al.
Publicado: (2021) -
SCU-Net: Semantic Segmentation Network for Learning Channel Information on Remote Sensing Images
por: Wang, Wei, et al.
Publicado: (2022) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Zhong, Bo, et al.
Publicado: (2021) -
Semi-Supervised Semantic Segmentation of Remote Sensing Images Based on Dual Cross-Entropy Consistency
por: Cui, Mengtian, et al.
Publicado: (2023) -
NAS-HRIS: Automatic Design and Architecture Search of Neural Network for Semantic Segmentation in Remote Sensing Images
por: Zhang, Mingwei, et al.
Publicado: (2020)