Cargando…

Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model

Background  We aimed to develop a convolutional neural network (CNN) model for detecting neoplastic lesions during real-time digital single-operator cholangioscopy (DSOC) and to clinically validate the model through comparisons with DSOC expert and nonexpert endoscopists. Methods  In this two-stage...

Descripción completa

Detalles Bibliográficos
Autores principales: Robles-Medranda, Carlos, Baquerizo-Burgos, Jorge, Alcivar-Vasquez, Juan, Kahaleh, Michel, Raijman, Isaac, Kunda, Rastislav, Puga-Tejada, Miguel, Egas-Izquierdo, Maria, Arevalo-Mora, Martha, Mendez, Juan C., Tyberg, Amy, Sarkar, Avik, Shahid, Haroon, del Valle-Zavala, Raquel, Rodriguez, Jorge, Merfea, Ruxandra C., Barreto-Perez, Jonathan, Saldaña-Pazmiño, Gabriela, Calle-Loffredo, Daniel, Alvarado, Haydee, Lukashok, Hannah P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Georg Thieme Verlag KG 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374349/
https://www.ncbi.nlm.nih.gov/pubmed/36781156
http://dx.doi.org/10.1055/a-2034-3803
_version_ 1785078755319873536
author Robles-Medranda, Carlos
Baquerizo-Burgos, Jorge
Alcivar-Vasquez, Juan
Kahaleh, Michel
Raijman, Isaac
Kunda, Rastislav
Puga-Tejada, Miguel
Egas-Izquierdo, Maria
Arevalo-Mora, Martha
Mendez, Juan C.
Tyberg, Amy
Sarkar, Avik
Shahid, Haroon
del Valle-Zavala, Raquel
Rodriguez, Jorge
Merfea, Ruxandra C.
Barreto-Perez, Jonathan
Saldaña-Pazmiño, Gabriela
Calle-Loffredo, Daniel
Alvarado, Haydee
Lukashok, Hannah P.
author_facet Robles-Medranda, Carlos
Baquerizo-Burgos, Jorge
Alcivar-Vasquez, Juan
Kahaleh, Michel
Raijman, Isaac
Kunda, Rastislav
Puga-Tejada, Miguel
Egas-Izquierdo, Maria
Arevalo-Mora, Martha
Mendez, Juan C.
Tyberg, Amy
Sarkar, Avik
Shahid, Haroon
del Valle-Zavala, Raquel
Rodriguez, Jorge
Merfea, Ruxandra C.
Barreto-Perez, Jonathan
Saldaña-Pazmiño, Gabriela
Calle-Loffredo, Daniel
Alvarado, Haydee
Lukashok, Hannah P.
author_sort Robles-Medranda, Carlos
collection PubMed
description Background  We aimed to develop a convolutional neural network (CNN) model for detecting neoplastic lesions during real-time digital single-operator cholangioscopy (DSOC) and to clinically validate the model through comparisons with DSOC expert and nonexpert endoscopists. Methods  In this two-stage study, we first developed and validated CNN1. Then, we performed a multicenter diagnostic trial to compare four DSOC experts and nonexperts against an improved model (CNN2). Lesions were classified into neoplastic and non-neoplastic in accordance with Carlos Robles-Medranda (CRM) and Mendoza disaggregated criteria. The final diagnosis of neoplasia was based on histopathology and 12-month follow-up outcomes. Results  In stage I, CNN2 achieved a mean average precision of 0.88, an intersection over the union value of 83.24 %, and a total loss of 0.0975. For clinical validation, a total of 170 videos from newly included patients were analyzed with the CNN2. Half of cases (50 %) had neoplastic lesions. This model achieved significant accuracy values for neoplastic diagnosis, with a 90.5 % sensitivity, 68.2 % specificity, and 74.0 % and 87.8 % positive and negative predictive values, respectively. The CNN2 model outperformed nonexpert #2 (area under the receiver operating characteristic curve [AUC]-CRM 0.657 vs. AUC-CNN2 0.794, P  < 0.05; AUC-Mendoza 0.582 vs. AUC-CNN2 0.794, P  < 0.05), nonexpert #4 (AUC-CRM 0.683 vs. AUC-CNN2 0.791, P  < 0.05), and expert #4 (AUC-CRM 0.755 vs. AUC-CNN2 0.848, P  < 0.05; AUC-Mendoza 0.753 vs. AUC-CNN2 0.848, P  < 0.05). Conclusions  The proposed CNN model distinguished neoplastic bile duct lesions with good accuracy and outperformed two nonexpert and one expert endoscopist.
format Online
Article
Text
id pubmed-10374349
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Georg Thieme Verlag KG
record_format MEDLINE/PubMed
spelling pubmed-103743492023-07-28 Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model Robles-Medranda, Carlos Baquerizo-Burgos, Jorge Alcivar-Vasquez, Juan Kahaleh, Michel Raijman, Isaac Kunda, Rastislav Puga-Tejada, Miguel Egas-Izquierdo, Maria Arevalo-Mora, Martha Mendez, Juan C. Tyberg, Amy Sarkar, Avik Shahid, Haroon del Valle-Zavala, Raquel Rodriguez, Jorge Merfea, Ruxandra C. Barreto-Perez, Jonathan Saldaña-Pazmiño, Gabriela Calle-Loffredo, Daniel Alvarado, Haydee Lukashok, Hannah P. Endoscopy Background  We aimed to develop a convolutional neural network (CNN) model for detecting neoplastic lesions during real-time digital single-operator cholangioscopy (DSOC) and to clinically validate the model through comparisons with DSOC expert and nonexpert endoscopists. Methods  In this two-stage study, we first developed and validated CNN1. Then, we performed a multicenter diagnostic trial to compare four DSOC experts and nonexperts against an improved model (CNN2). Lesions were classified into neoplastic and non-neoplastic in accordance with Carlos Robles-Medranda (CRM) and Mendoza disaggregated criteria. The final diagnosis of neoplasia was based on histopathology and 12-month follow-up outcomes. Results  In stage I, CNN2 achieved a mean average precision of 0.88, an intersection over the union value of 83.24 %, and a total loss of 0.0975. For clinical validation, a total of 170 videos from newly included patients were analyzed with the CNN2. Half of cases (50 %) had neoplastic lesions. This model achieved significant accuracy values for neoplastic diagnosis, with a 90.5 % sensitivity, 68.2 % specificity, and 74.0 % and 87.8 % positive and negative predictive values, respectively. The CNN2 model outperformed nonexpert #2 (area under the receiver operating characteristic curve [AUC]-CRM 0.657 vs. AUC-CNN2 0.794, P  < 0.05; AUC-Mendoza 0.582 vs. AUC-CNN2 0.794, P  < 0.05), nonexpert #4 (AUC-CRM 0.683 vs. AUC-CNN2 0.791, P  < 0.05), and expert #4 (AUC-CRM 0.755 vs. AUC-CNN2 0.848, P  < 0.05; AUC-Mendoza 0.753 vs. AUC-CNN2 0.848, P  < 0.05). Conclusions  The proposed CNN model distinguished neoplastic bile duct lesions with good accuracy and outperformed two nonexpert and one expert endoscopist. Georg Thieme Verlag KG 2023-04-18 /pmc/articles/PMC10374349/ /pubmed/36781156 http://dx.doi.org/10.1055/a-2034-3803 Text en The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited.
spellingShingle Robles-Medranda, Carlos
Baquerizo-Burgos, Jorge
Alcivar-Vasquez, Juan
Kahaleh, Michel
Raijman, Isaac
Kunda, Rastislav
Puga-Tejada, Miguel
Egas-Izquierdo, Maria
Arevalo-Mora, Martha
Mendez, Juan C.
Tyberg, Amy
Sarkar, Avik
Shahid, Haroon
del Valle-Zavala, Raquel
Rodriguez, Jorge
Merfea, Ruxandra C.
Barreto-Perez, Jonathan
Saldaña-Pazmiño, Gabriela
Calle-Loffredo, Daniel
Alvarado, Haydee
Lukashok, Hannah P.
Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model
title Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model
title_full Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model
title_fullStr Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model
title_full_unstemmed Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model
title_short Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model
title_sort artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374349/
https://www.ncbi.nlm.nih.gov/pubmed/36781156
http://dx.doi.org/10.1055/a-2034-3803
work_keys_str_mv AT roblesmedrandacarlos artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT baquerizoburgosjorge artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT alcivarvasquezjuan artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT kahalehmichel artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT raijmanisaac artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT kundarastislav artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT pugatejadamiguel artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT egasizquierdomaria artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT arevalomoramartha artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT mendezjuanc artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT tybergamy artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT sarkaravik artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT shahidharoon artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT delvallezavalaraquel artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT rodriguezjorge artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT merfearuxandrac artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT barretoperezjonathan artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT saldanapazminogabriela artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT calleloffredodaniel artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT alvaradohaydee artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel
AT lukashokhannahp artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel