Cargando…
Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model
Background We aimed to develop a convolutional neural network (CNN) model for detecting neoplastic lesions during real-time digital single-operator cholangioscopy (DSOC) and to clinically validate the model through comparisons with DSOC expert and nonexpert endoscopists. Methods In this two-stage...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Georg Thieme Verlag KG
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374349/ https://www.ncbi.nlm.nih.gov/pubmed/36781156 http://dx.doi.org/10.1055/a-2034-3803 |
_version_ | 1785078755319873536 |
---|---|
author | Robles-Medranda, Carlos Baquerizo-Burgos, Jorge Alcivar-Vasquez, Juan Kahaleh, Michel Raijman, Isaac Kunda, Rastislav Puga-Tejada, Miguel Egas-Izquierdo, Maria Arevalo-Mora, Martha Mendez, Juan C. Tyberg, Amy Sarkar, Avik Shahid, Haroon del Valle-Zavala, Raquel Rodriguez, Jorge Merfea, Ruxandra C. Barreto-Perez, Jonathan Saldaña-Pazmiño, Gabriela Calle-Loffredo, Daniel Alvarado, Haydee Lukashok, Hannah P. |
author_facet | Robles-Medranda, Carlos Baquerizo-Burgos, Jorge Alcivar-Vasquez, Juan Kahaleh, Michel Raijman, Isaac Kunda, Rastislav Puga-Tejada, Miguel Egas-Izquierdo, Maria Arevalo-Mora, Martha Mendez, Juan C. Tyberg, Amy Sarkar, Avik Shahid, Haroon del Valle-Zavala, Raquel Rodriguez, Jorge Merfea, Ruxandra C. Barreto-Perez, Jonathan Saldaña-Pazmiño, Gabriela Calle-Loffredo, Daniel Alvarado, Haydee Lukashok, Hannah P. |
author_sort | Robles-Medranda, Carlos |
collection | PubMed |
description | Background We aimed to develop a convolutional neural network (CNN) model for detecting neoplastic lesions during real-time digital single-operator cholangioscopy (DSOC) and to clinically validate the model through comparisons with DSOC expert and nonexpert endoscopists. Methods In this two-stage study, we first developed and validated CNN1. Then, we performed a multicenter diagnostic trial to compare four DSOC experts and nonexperts against an improved model (CNN2). Lesions were classified into neoplastic and non-neoplastic in accordance with Carlos Robles-Medranda (CRM) and Mendoza disaggregated criteria. The final diagnosis of neoplasia was based on histopathology and 12-month follow-up outcomes. Results In stage I, CNN2 achieved a mean average precision of 0.88, an intersection over the union value of 83.24 %, and a total loss of 0.0975. For clinical validation, a total of 170 videos from newly included patients were analyzed with the CNN2. Half of cases (50 %) had neoplastic lesions. This model achieved significant accuracy values for neoplastic diagnosis, with a 90.5 % sensitivity, 68.2 % specificity, and 74.0 % and 87.8 % positive and negative predictive values, respectively. The CNN2 model outperformed nonexpert #2 (area under the receiver operating characteristic curve [AUC]-CRM 0.657 vs. AUC-CNN2 0.794, P < 0.05; AUC-Mendoza 0.582 vs. AUC-CNN2 0.794, P < 0.05), nonexpert #4 (AUC-CRM 0.683 vs. AUC-CNN2 0.791, P < 0.05), and expert #4 (AUC-CRM 0.755 vs. AUC-CNN2 0.848, P < 0.05; AUC-Mendoza 0.753 vs. AUC-CNN2 0.848, P < 0.05). Conclusions The proposed CNN model distinguished neoplastic bile duct lesions with good accuracy and outperformed two nonexpert and one expert endoscopist. |
format | Online Article Text |
id | pubmed-10374349 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Georg Thieme Verlag KG |
record_format | MEDLINE/PubMed |
spelling | pubmed-103743492023-07-28 Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model Robles-Medranda, Carlos Baquerizo-Burgos, Jorge Alcivar-Vasquez, Juan Kahaleh, Michel Raijman, Isaac Kunda, Rastislav Puga-Tejada, Miguel Egas-Izquierdo, Maria Arevalo-Mora, Martha Mendez, Juan C. Tyberg, Amy Sarkar, Avik Shahid, Haroon del Valle-Zavala, Raquel Rodriguez, Jorge Merfea, Ruxandra C. Barreto-Perez, Jonathan Saldaña-Pazmiño, Gabriela Calle-Loffredo, Daniel Alvarado, Haydee Lukashok, Hannah P. Endoscopy Background We aimed to develop a convolutional neural network (CNN) model for detecting neoplastic lesions during real-time digital single-operator cholangioscopy (DSOC) and to clinically validate the model through comparisons with DSOC expert and nonexpert endoscopists. Methods In this two-stage study, we first developed and validated CNN1. Then, we performed a multicenter diagnostic trial to compare four DSOC experts and nonexperts against an improved model (CNN2). Lesions were classified into neoplastic and non-neoplastic in accordance with Carlos Robles-Medranda (CRM) and Mendoza disaggregated criteria. The final diagnosis of neoplasia was based on histopathology and 12-month follow-up outcomes. Results In stage I, CNN2 achieved a mean average precision of 0.88, an intersection over the union value of 83.24 %, and a total loss of 0.0975. For clinical validation, a total of 170 videos from newly included patients were analyzed with the CNN2. Half of cases (50 %) had neoplastic lesions. This model achieved significant accuracy values for neoplastic diagnosis, with a 90.5 % sensitivity, 68.2 % specificity, and 74.0 % and 87.8 % positive and negative predictive values, respectively. The CNN2 model outperformed nonexpert #2 (area under the receiver operating characteristic curve [AUC]-CRM 0.657 vs. AUC-CNN2 0.794, P < 0.05; AUC-Mendoza 0.582 vs. AUC-CNN2 0.794, P < 0.05), nonexpert #4 (AUC-CRM 0.683 vs. AUC-CNN2 0.791, P < 0.05), and expert #4 (AUC-CRM 0.755 vs. AUC-CNN2 0.848, P < 0.05; AUC-Mendoza 0.753 vs. AUC-CNN2 0.848, P < 0.05). Conclusions The proposed CNN model distinguished neoplastic bile duct lesions with good accuracy and outperformed two nonexpert and one expert endoscopist. Georg Thieme Verlag KG 2023-04-18 /pmc/articles/PMC10374349/ /pubmed/36781156 http://dx.doi.org/10.1055/a-2034-3803 Text en The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited. |
spellingShingle | Robles-Medranda, Carlos Baquerizo-Burgos, Jorge Alcivar-Vasquez, Juan Kahaleh, Michel Raijman, Isaac Kunda, Rastislav Puga-Tejada, Miguel Egas-Izquierdo, Maria Arevalo-Mora, Martha Mendez, Juan C. Tyberg, Amy Sarkar, Avik Shahid, Haroon del Valle-Zavala, Raquel Rodriguez, Jorge Merfea, Ruxandra C. Barreto-Perez, Jonathan Saldaña-Pazmiño, Gabriela Calle-Loffredo, Daniel Alvarado, Haydee Lukashok, Hannah P. Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model |
title | Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model |
title_full | Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model |
title_fullStr | Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model |
title_full_unstemmed | Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model |
title_short | Artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model |
title_sort | artificial intelligence for diagnosing neoplasia on digital cholangioscopy: development and multicenter validation of a convolutional neural network model |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374349/ https://www.ncbi.nlm.nih.gov/pubmed/36781156 http://dx.doi.org/10.1055/a-2034-3803 |
work_keys_str_mv | AT roblesmedrandacarlos artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT baquerizoburgosjorge artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT alcivarvasquezjuan artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT kahalehmichel artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT raijmanisaac artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT kundarastislav artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT pugatejadamiguel artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT egasizquierdomaria artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT arevalomoramartha artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT mendezjuanc artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT tybergamy artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT sarkaravik artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT shahidharoon artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT delvallezavalaraquel artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT rodriguezjorge artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT merfearuxandrac artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT barretoperezjonathan artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT saldanapazminogabriela artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT calleloffredodaniel artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT alvaradohaydee artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel AT lukashokhannahp artificialintelligencefordiagnosingneoplasiaondigitalcholangioscopydevelopmentandmulticentervalidationofaconvolutionalneuralnetworkmodel |