Cargando…
Geometric deep learning as a potential tool for antimicrobial peptide prediction
Antimicrobial peptides (AMPs) are components of natural immunity against invading pathogens. They are polymers that fold into a variety of three-dimensional structures, enabling their function, with an underlying sequence that is best represented in a non-flat space. The structural data of AMPs exhi...
Autores principales: | Fernandes, Fabiano C., Cardoso, Marlon H., Gil-Ley, Abel, Luchi, Lívia V., da Silva, Maria G. L., Macedo, Maria L. R., de la Fuente-Nunez, Cesar, Franco, Octavio L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374423/ https://www.ncbi.nlm.nih.gov/pubmed/37521317 http://dx.doi.org/10.3389/fbinf.2023.1216362 |
Ejemplares similares
-
Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections
por: Buccini, Danieli F., et al.
Publicado: (2021) -
Macrel: antimicrobial peptide screening in genomes and metagenomes
por: Santos-Júnior, Célio Dias, et al.
Publicado: (2020) -
Supervised deep learning embeddings for the prediction of cervical cancer diagnosis
por: Fernandes, Kelwin, et al.
Publicado: (2018) -
Toward insights on determining factors for high activity in antimicrobial peptides via machine learning
por: Li, Hao, et al.
Publicado: (2019) -
Editorial: Antimicrobial Peptides: Molecular Design, Structure-Function Relationship, and Biosynthesis Optimization
por: Hao, Ya, et al.
Publicado: (2022)