Cargando…
Prediction of metabolite–protein interactions based on integration of machine learning and constraint-based modeling
MOTIVATION: Metabolite–protein interactions play an important role in regulating protein functions and metabolism. Yet, predictions of metabolite–protein interactions using genome-scale metabolic networks are lacking. Here, we fill this gap by presenting a computational framework, termed SARTRE, tha...
Autores principales: | Soleymani Babadi, Fayaz, Razaghi-Moghadam, Zahra, Zare-Mirakabad, Fatemeh, Nikoloski, Zoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374491/ https://www.ncbi.nlm.nih.gov/pubmed/37521309 http://dx.doi.org/10.1093/bioadv/vbad098 |
Ejemplares similares
-
GeneReg: a constraint-based approach for design of feasible metabolic engineering strategies at the gene level
por: Razaghi-Moghadam, Zahra, et al.
Publicado: (2020) -
Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data
por: Razaghi-Moghadam, Zahra, et al.
Publicado: (2020) -
Data integration across conditions improves turnover number estimates and metabolic predictions
por: Wendering, Philipp, et al.
Publicado: (2023) -
Integration of relative metabolomics and transcriptomics time-course data in a metabolic model pinpoints effects of ribosome biogenesis defects on Arabidopsis thaliana metabolism
por: Pries, Christopher, et al.
Publicado: (2021) -
Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis
por: Seep, Lea, et al.
Publicado: (2021)