Cargando…
Investigations on the high performance of InGaN red micro-LEDs with single quantum well for visible light communication applications
In this study, we have demonstrated the potential of InGaN-based red micro-LEDs with single quantum well (SQW) structure for visible light communication applications. Our findings indicate the SQW sample has a better crystal quality, with high-purity emission, a narrower full width at half maximum,...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374497/ https://www.ncbi.nlm.nih.gov/pubmed/37498403 http://dx.doi.org/10.1186/s11671-023-03871-z |
Sumario: | In this study, we have demonstrated the potential of InGaN-based red micro-LEDs with single quantum well (SQW) structure for visible light communication applications. Our findings indicate the SQW sample has a better crystal quality, with high-purity emission, a narrower full width at half maximum, and higher internal quantum efficiency, compared to InGaN red micro-LED with a double quantum wells (DQWs) structure. The InGaN red micro-LED with SQW structure exhibits a higher maximum external quantum efficiency of 5.95% and experiences less blueshift as the current density increases when compared to the DQWs device. Furthermore, the SQW device has a superior modulation bandwidth of 424 MHz with a data transmission rate of 800 Mbit/s at an injection current density of 2000 A/cm(2). These results demonstrate that InGaN-based SQW red micro-LEDs hold great promise for realizing full-color micro-display and visible light communication applications. |
---|