Cargando…

A recombinant Aspergillus oryzae fungus transmitted from larvae to adults of Anopheles stephensi mosquitoes inhibits malaria parasite oocyst development

The control of malaria parasite transmission from mosquitoes to humans is hampered by decreasing efficacies of insecticides, development of drug resistance against the last-resort antimalarials, and the absence of effective vaccines. Herein, the anti-plasmodial transmission blocking activity of a re...

Descripción completa

Detalles Bibliográficos
Autores principales: Kianifard, Leila, Rafiqi, Ab. Matteen, Akcakir, Osman, Aly, Ahmed S. I., Billingsley, Peter F., Uysal, Serdar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374630/
https://www.ncbi.nlm.nih.gov/pubmed/37500682
http://dx.doi.org/10.1038/s41598-023-38654-0
Descripción
Sumario:The control of malaria parasite transmission from mosquitoes to humans is hampered by decreasing efficacies of insecticides, development of drug resistance against the last-resort antimalarials, and the absence of effective vaccines. Herein, the anti-plasmodial transmission blocking activity of a recombinant Aspergillus oryzae (A. oryzae-R) fungus strain, which is used in human food industry, was investigated in laboratory-reared Anopheles stephensi mosquitoes. The recombinant fungus strain was genetically modified to secrete two anti-plasmodial effector peptides, MP2 (midgut peptide 2) and EPIP (enolase-plasminogen interaction peptide) peptides. The transstadial transmission of the fungus from larvae to adult mosquitoes was confirmed following inoculation of A. oryzae-R in the water trays used for larval rearing. Secretion of the anti-plasmodial effector peptides inside the mosquito midguts inhibited oocyst formation of P. berghei parasites. These results indicate that A. oryzae can be used as a paratransgenesis model carrying effector proteins to inhibit malaria parasite development in An. stephensi. Further studies are needed to determine if this recombinant fungus can be adapted under natural conditions, with a minimal or no impact on the environment, to target mosquito-borne infectious disease agents inside their vectors.