Cargando…

A paired dataset of T1- and T2-weighted MRI at 3 Tesla and 7 Tesla

Brain magnetic resonance imaging (MRI) provides detailed soft tissue contrasts that are critical for disease diagnosis and neuroscience research. Higher MRI resolution typically comes at the cost of signal-to-noise ratio (SNR) and tissue contrast, particularly for more common 3 Tesla (3T) MRI scanne...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xiaoyang, Qu, Liangqiong, Xie, Yifang, Ahmad, Sahar, Yap, Pew-Thian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374655/
https://www.ncbi.nlm.nih.gov/pubmed/37500686
http://dx.doi.org/10.1038/s41597-023-02400-y
Descripción
Sumario:Brain magnetic resonance imaging (MRI) provides detailed soft tissue contrasts that are critical for disease diagnosis and neuroscience research. Higher MRI resolution typically comes at the cost of signal-to-noise ratio (SNR) and tissue contrast, particularly for more common 3 Tesla (3T) MRI scanners. At ultra-high magnetic field strength, 7 Tesla (7T) MRI allows for higher resolution with greater tissue contrast and SNR. However, the prohibitively high costs of 7T MRI scanners deter their widespread adoption in clinical and research centers. To obtain higher-quality images without 7T MRI scanners, algorithms that can synthesize 7T MR images from 3T MR images are under active development. Here, we make available a dataset of paired T1-weighted and T2-weighted MR images at 3T and 7T of 10 healthy subjects to facilitate the development and evaluation of 3T-to-7T MR image synthesis models. The quality of the dataset is assessed using image quality metrics implemented in MRIQC.