Cargando…
Tumor suppressor miR-218 directly targets epidermal growth factor receptor (EGFR) expression in triple-negative breast cancer, sensitizing cells to irradiation
PURPOSE: MicroRNA-218 (miR-218) is a key regulator of numerous processes relevant to tumor progression. In the present study, we aimed to characterize the relationship between miR-218 and the Epidermal Growth Factor Receptor (EGFR) as well as to understand downstream effects in triple-negative breas...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374822/ https://www.ncbi.nlm.nih.gov/pubmed/37088795 http://dx.doi.org/10.1007/s00432-023-04750-x |
Sumario: | PURPOSE: MicroRNA-218 (miR-218) is a key regulator of numerous processes relevant to tumor progression. In the present study, we aimed to characterize the relationship between miR-218 and the Epidermal Growth Factor Receptor (EGFR) as well as to understand downstream effects in triple-negative breast cancer (TNBC). METHODS: We assessed miR-218 and EGFR expression in cell lines and publicly available primary breast cancer gene expression data. We then overexpressed miR-218 in two TNBC cell lines and investigated effects on EGFR and downstream mitogen-activated protein (MAP) kinase signaling. Luciferase reporter assay was used to characterize a direct binding interaction between miR-218 and EGFR mRNA. Digital holographic microscopy helped investigate cell migration and dry mass after miR-218 overexpression. Cell division and invasion were assessed microscopically, while radiation response after miR-218 overexpression alone or combined with additional EGFR knockdown was investigated via clonogenic assays. RESULTS: We found an inverse correlation between EGFR expression and miR-218 levels in cell lines and primary breast cancer tissues. MiR-218 overexpression resulted in a downregulation of EGFR via direct binding of the mRNA. Activation of EGFR and downstream p44/42 MAPK signaling were reduced after pre-miR-218 transfection. Cell proliferation, motility and invasiveness were inhibited whereas cell death and mitotic catastrophe were upregulated in miR-218 overexpressing cells compared to controls. MiR-218 overexpressing and EGFR siRNA-treated cells were sensitized to irradiation, more than miR-218 overexpressing cells alone. CONCLUSION: This study characterizes the antagonistic relationship between miR-218 and EGFR. It also demonstrates downstream functional effects of miR-218 overexpression, leading to anti-tumorigenic cellular changes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00432-023-04750-x. |
---|