Cargando…

An overview and a roadmap for artificial intelligence in hematology and oncology

BACKGROUND: Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas...

Descripción completa

Detalles Bibliográficos
Autores principales: Rösler, Wiebke, Altenbuchinger, Michael, Baeßler, Bettina, Beissbarth, Tim, Beutel, Gernot, Bock, Robert, von Bubnoff, Nikolas, Eckardt, Jan-Niklas, Foersch, Sebastian, Loeffler, Chiara M. L., Middeke, Jan Moritz, Mueller, Martha-Lena, Oellerich, Thomas, Risse, Benjamin, Scherag, André, Schliemann, Christoph, Scholz, Markus, Spang, Rainer, Thielscher, Christian, Tsoukakis, Ioannis, Kather, Jakob Nikolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374829/
https://www.ncbi.nlm.nih.gov/pubmed/36920563
http://dx.doi.org/10.1007/s00432-023-04667-5
_version_ 1785078862104756224
author Rösler, Wiebke
Altenbuchinger, Michael
Baeßler, Bettina
Beissbarth, Tim
Beutel, Gernot
Bock, Robert
von Bubnoff, Nikolas
Eckardt, Jan-Niklas
Foersch, Sebastian
Loeffler, Chiara M. L.
Middeke, Jan Moritz
Mueller, Martha-Lena
Oellerich, Thomas
Risse, Benjamin
Scherag, André
Schliemann, Christoph
Scholz, Markus
Spang, Rainer
Thielscher, Christian
Tsoukakis, Ioannis
Kather, Jakob Nikolas
author_facet Rösler, Wiebke
Altenbuchinger, Michael
Baeßler, Bettina
Beissbarth, Tim
Beutel, Gernot
Bock, Robert
von Bubnoff, Nikolas
Eckardt, Jan-Niklas
Foersch, Sebastian
Loeffler, Chiara M. L.
Middeke, Jan Moritz
Mueller, Martha-Lena
Oellerich, Thomas
Risse, Benjamin
Scherag, André
Schliemann, Christoph
Scholz, Markus
Spang, Rainer
Thielscher, Christian
Tsoukakis, Ioannis
Kather, Jakob Nikolas
author_sort Rösler, Wiebke
collection PubMed
description BACKGROUND: Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals. METHODS: In this article, we provide an expert-based consensus statement by the joint Working Group on “Artificial Intelligence in Hematology and Oncology” by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology. RESULTS: First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology. CONCLUSION: Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future.
format Online
Article
Text
id pubmed-10374829
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-103748292023-07-29 An overview and a roadmap for artificial intelligence in hematology and oncology Rösler, Wiebke Altenbuchinger, Michael Baeßler, Bettina Beissbarth, Tim Beutel, Gernot Bock, Robert von Bubnoff, Nikolas Eckardt, Jan-Niklas Foersch, Sebastian Loeffler, Chiara M. L. Middeke, Jan Moritz Mueller, Martha-Lena Oellerich, Thomas Risse, Benjamin Scherag, André Schliemann, Christoph Scholz, Markus Spang, Rainer Thielscher, Christian Tsoukakis, Ioannis Kather, Jakob Nikolas J Cancer Res Clin Oncol Review BACKGROUND: Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals. METHODS: In this article, we provide an expert-based consensus statement by the joint Working Group on “Artificial Intelligence in Hematology and Oncology” by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology. RESULTS: First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology. CONCLUSION: Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future. Springer Berlin Heidelberg 2023-03-15 2023 /pmc/articles/PMC10374829/ /pubmed/36920563 http://dx.doi.org/10.1007/s00432-023-04667-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Review
Rösler, Wiebke
Altenbuchinger, Michael
Baeßler, Bettina
Beissbarth, Tim
Beutel, Gernot
Bock, Robert
von Bubnoff, Nikolas
Eckardt, Jan-Niklas
Foersch, Sebastian
Loeffler, Chiara M. L.
Middeke, Jan Moritz
Mueller, Martha-Lena
Oellerich, Thomas
Risse, Benjamin
Scherag, André
Schliemann, Christoph
Scholz, Markus
Spang, Rainer
Thielscher, Christian
Tsoukakis, Ioannis
Kather, Jakob Nikolas
An overview and a roadmap for artificial intelligence in hematology and oncology
title An overview and a roadmap for artificial intelligence in hematology and oncology
title_full An overview and a roadmap for artificial intelligence in hematology and oncology
title_fullStr An overview and a roadmap for artificial intelligence in hematology and oncology
title_full_unstemmed An overview and a roadmap for artificial intelligence in hematology and oncology
title_short An overview and a roadmap for artificial intelligence in hematology and oncology
title_sort overview and a roadmap for artificial intelligence in hematology and oncology
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374829/
https://www.ncbi.nlm.nih.gov/pubmed/36920563
http://dx.doi.org/10.1007/s00432-023-04667-5
work_keys_str_mv AT roslerwiebke anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT altenbuchingermichael anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT baeßlerbettina anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT beissbarthtim anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT beutelgernot anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT bockrobert anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT vonbubnoffnikolas anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT eckardtjanniklas anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT foerschsebastian anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT loefflerchiaraml anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT middekejanmoritz anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT muellermarthalena anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT oellerichthomas anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT rissebenjamin anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT scheragandre anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT schliemannchristoph anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT scholzmarkus anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT spangrainer anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT thielscherchristian anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT tsoukakisioannis anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT katherjakobnikolas anoverviewandaroadmapforartificialintelligenceinhematologyandoncology
AT roslerwiebke overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT altenbuchingermichael overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT baeßlerbettina overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT beissbarthtim overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT beutelgernot overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT bockrobert overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT vonbubnoffnikolas overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT eckardtjanniklas overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT foerschsebastian overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT loefflerchiaraml overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT middekejanmoritz overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT muellermarthalena overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT oellerichthomas overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT rissebenjamin overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT scheragandre overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT schliemannchristoph overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT scholzmarkus overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT spangrainer overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT thielscherchristian overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT tsoukakisioannis overviewandaroadmapforartificialintelligenceinhematologyandoncology
AT katherjakobnikolas overviewandaroadmapforartificialintelligenceinhematologyandoncology