Cargando…
An overview and a roadmap for artificial intelligence in hematology and oncology
BACKGROUND: Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374829/ https://www.ncbi.nlm.nih.gov/pubmed/36920563 http://dx.doi.org/10.1007/s00432-023-04667-5 |
_version_ | 1785078862104756224 |
---|---|
author | Rösler, Wiebke Altenbuchinger, Michael Baeßler, Bettina Beissbarth, Tim Beutel, Gernot Bock, Robert von Bubnoff, Nikolas Eckardt, Jan-Niklas Foersch, Sebastian Loeffler, Chiara M. L. Middeke, Jan Moritz Mueller, Martha-Lena Oellerich, Thomas Risse, Benjamin Scherag, André Schliemann, Christoph Scholz, Markus Spang, Rainer Thielscher, Christian Tsoukakis, Ioannis Kather, Jakob Nikolas |
author_facet | Rösler, Wiebke Altenbuchinger, Michael Baeßler, Bettina Beissbarth, Tim Beutel, Gernot Bock, Robert von Bubnoff, Nikolas Eckardt, Jan-Niklas Foersch, Sebastian Loeffler, Chiara M. L. Middeke, Jan Moritz Mueller, Martha-Lena Oellerich, Thomas Risse, Benjamin Scherag, André Schliemann, Christoph Scholz, Markus Spang, Rainer Thielscher, Christian Tsoukakis, Ioannis Kather, Jakob Nikolas |
author_sort | Rösler, Wiebke |
collection | PubMed |
description | BACKGROUND: Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals. METHODS: In this article, we provide an expert-based consensus statement by the joint Working Group on “Artificial Intelligence in Hematology and Oncology” by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology. RESULTS: First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology. CONCLUSION: Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future. |
format | Online Article Text |
id | pubmed-10374829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-103748292023-07-29 An overview and a roadmap for artificial intelligence in hematology and oncology Rösler, Wiebke Altenbuchinger, Michael Baeßler, Bettina Beissbarth, Tim Beutel, Gernot Bock, Robert von Bubnoff, Nikolas Eckardt, Jan-Niklas Foersch, Sebastian Loeffler, Chiara M. L. Middeke, Jan Moritz Mueller, Martha-Lena Oellerich, Thomas Risse, Benjamin Scherag, André Schliemann, Christoph Scholz, Markus Spang, Rainer Thielscher, Christian Tsoukakis, Ioannis Kather, Jakob Nikolas J Cancer Res Clin Oncol Review BACKGROUND: Artificial intelligence (AI) is influencing our society on many levels and has broad implications for the future practice of hematology and oncology. However, for many medical professionals and researchers, it often remains unclear what AI can and cannot do, and what are promising areas for a sensible application of AI in hematology and oncology. Finally, the limits and perils of using AI in oncology are not obvious to many healthcare professionals. METHODS: In this article, we provide an expert-based consensus statement by the joint Working Group on “Artificial Intelligence in Hematology and Oncology” by the German Society of Hematology and Oncology (DGHO), the German Association for Medical Informatics, Biometry and Epidemiology (GMDS), and the Special Interest Group Digital Health of the German Informatics Society (GI). We provide a conceptual framework for AI in hematology and oncology. RESULTS: First, we propose a technological definition, which we deliberately set in a narrow frame to mainly include the technical developments of the last ten years. Second, we present a taxonomy of clinically relevant AI systems, structured according to the type of clinical data they are used to analyze. Third, we show an overview of potential applications, including clinical, research, and educational environments with a focus on hematology and oncology. CONCLUSION: Thus, this article provides a point of reference for hematologists and oncologists, and at the same time sets forth a framework for the further development and clinical deployment of AI in hematology and oncology in the future. Springer Berlin Heidelberg 2023-03-15 2023 /pmc/articles/PMC10374829/ /pubmed/36920563 http://dx.doi.org/10.1007/s00432-023-04667-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Rösler, Wiebke Altenbuchinger, Michael Baeßler, Bettina Beissbarth, Tim Beutel, Gernot Bock, Robert von Bubnoff, Nikolas Eckardt, Jan-Niklas Foersch, Sebastian Loeffler, Chiara M. L. Middeke, Jan Moritz Mueller, Martha-Lena Oellerich, Thomas Risse, Benjamin Scherag, André Schliemann, Christoph Scholz, Markus Spang, Rainer Thielscher, Christian Tsoukakis, Ioannis Kather, Jakob Nikolas An overview and a roadmap for artificial intelligence in hematology and oncology |
title | An overview and a roadmap for artificial intelligence in hematology and oncology |
title_full | An overview and a roadmap for artificial intelligence in hematology and oncology |
title_fullStr | An overview and a roadmap for artificial intelligence in hematology and oncology |
title_full_unstemmed | An overview and a roadmap for artificial intelligence in hematology and oncology |
title_short | An overview and a roadmap for artificial intelligence in hematology and oncology |
title_sort | overview and a roadmap for artificial intelligence in hematology and oncology |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10374829/ https://www.ncbi.nlm.nih.gov/pubmed/36920563 http://dx.doi.org/10.1007/s00432-023-04667-5 |
work_keys_str_mv | AT roslerwiebke anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT altenbuchingermichael anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT baeßlerbettina anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT beissbarthtim anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT beutelgernot anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT bockrobert anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT vonbubnoffnikolas anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT eckardtjanniklas anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT foerschsebastian anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT loefflerchiaraml anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT middekejanmoritz anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT muellermarthalena anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT oellerichthomas anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT rissebenjamin anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT scheragandre anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT schliemannchristoph anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT scholzmarkus anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT spangrainer anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT thielscherchristian anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT tsoukakisioannis anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT katherjakobnikolas anoverviewandaroadmapforartificialintelligenceinhematologyandoncology AT roslerwiebke overviewandaroadmapforartificialintelligenceinhematologyandoncology AT altenbuchingermichael overviewandaroadmapforartificialintelligenceinhematologyandoncology AT baeßlerbettina overviewandaroadmapforartificialintelligenceinhematologyandoncology AT beissbarthtim overviewandaroadmapforartificialintelligenceinhematologyandoncology AT beutelgernot overviewandaroadmapforartificialintelligenceinhematologyandoncology AT bockrobert overviewandaroadmapforartificialintelligenceinhematologyandoncology AT vonbubnoffnikolas overviewandaroadmapforartificialintelligenceinhematologyandoncology AT eckardtjanniklas overviewandaroadmapforartificialintelligenceinhematologyandoncology AT foerschsebastian overviewandaroadmapforartificialintelligenceinhematologyandoncology AT loefflerchiaraml overviewandaroadmapforartificialintelligenceinhematologyandoncology AT middekejanmoritz overviewandaroadmapforartificialintelligenceinhematologyandoncology AT muellermarthalena overviewandaroadmapforartificialintelligenceinhematologyandoncology AT oellerichthomas overviewandaroadmapforartificialintelligenceinhematologyandoncology AT rissebenjamin overviewandaroadmapforartificialintelligenceinhematologyandoncology AT scheragandre overviewandaroadmapforartificialintelligenceinhematologyandoncology AT schliemannchristoph overviewandaroadmapforartificialintelligenceinhematologyandoncology AT scholzmarkus overviewandaroadmapforartificialintelligenceinhematologyandoncology AT spangrainer overviewandaroadmapforartificialintelligenceinhematologyandoncology AT thielscherchristian overviewandaroadmapforartificialintelligenceinhematologyandoncology AT tsoukakisioannis overviewandaroadmapforartificialintelligenceinhematologyandoncology AT katherjakobnikolas overviewandaroadmapforartificialintelligenceinhematologyandoncology |