Cargando…
Polyaniline‐Coated Mesoporous Carbon Nanosheets with Fast Capacitive Energy Storage in Symmetric Supercapacitors
Polyaniline‐capped mesoporous carbon nanosheets with high conductivity and porosity are synthesized by vapor deposition polymerization. The mesoporous carbon template is prepared by removing ordered cubic iron oxide nanocrystals embedded in the carbon matrix obtained by thermal decomposition of an i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375140/ https://www.ncbi.nlm.nih.gov/pubmed/37162216 http://dx.doi.org/10.1002/advs.202301923 |
_version_ | 1785078970042023936 |
---|---|
author | Noh, Jungchul Jekal, Suk Yoon, Chang‐Min |
author_facet | Noh, Jungchul Jekal, Suk Yoon, Chang‐Min |
author_sort | Noh, Jungchul |
collection | PubMed |
description | Polyaniline‐capped mesoporous carbon nanosheets with high conductivity and porosity are synthesized by vapor deposition polymerization. The mesoporous carbon template is prepared by removing ordered cubic iron oxide nanocrystals embedded in the carbon matrix obtained by thermal decomposition of an iron‐oleate complex in a sodium chloride matrix. The evaporated aniline monomers are slowly polymerized on the carbon surface pretreated with FeCl(3) as an initiator, partially filling the carbon pores to improve conductivity. The resulting products exhibit efficient hybrid energy storage mechanisms of electric double‐layer capacitance and pseudocapacitance. When the nanosheets are assembled for a symmetric supercapacitor, the device capacitance reaches 107.8 F g(−1), at a current density of 0.5 A g(−1), and a capacitance retention of 69.6% is achieved at a ten times higher current density of 5 A g(−1). Electrochemical impedance spectroscopy reveals that the transition from resistive to capacitive behavior occurs within 0.63 s, indicating that fast ion and charge transport results in high capacitance and rate capability. The corresponding energy and power densities are 9.59 Wh kg(−1) and 200.1 W kg(−1) at a current density of 0.5 A g(−1), demonstrating efficient energy storage in a symmetric supercapacitor. |
format | Online Article Text |
id | pubmed-10375140 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103751402023-07-29 Polyaniline‐Coated Mesoporous Carbon Nanosheets with Fast Capacitive Energy Storage in Symmetric Supercapacitors Noh, Jungchul Jekal, Suk Yoon, Chang‐Min Adv Sci (Weinh) Research Articles Polyaniline‐capped mesoporous carbon nanosheets with high conductivity and porosity are synthesized by vapor deposition polymerization. The mesoporous carbon template is prepared by removing ordered cubic iron oxide nanocrystals embedded in the carbon matrix obtained by thermal decomposition of an iron‐oleate complex in a sodium chloride matrix. The evaporated aniline monomers are slowly polymerized on the carbon surface pretreated with FeCl(3) as an initiator, partially filling the carbon pores to improve conductivity. The resulting products exhibit efficient hybrid energy storage mechanisms of electric double‐layer capacitance and pseudocapacitance. When the nanosheets are assembled for a symmetric supercapacitor, the device capacitance reaches 107.8 F g(−1), at a current density of 0.5 A g(−1), and a capacitance retention of 69.6% is achieved at a ten times higher current density of 5 A g(−1). Electrochemical impedance spectroscopy reveals that the transition from resistive to capacitive behavior occurs within 0.63 s, indicating that fast ion and charge transport results in high capacitance and rate capability. The corresponding energy and power densities are 9.59 Wh kg(−1) and 200.1 W kg(−1) at a current density of 0.5 A g(−1), demonstrating efficient energy storage in a symmetric supercapacitor. John Wiley and Sons Inc. 2023-05-10 /pmc/articles/PMC10375140/ /pubmed/37162216 http://dx.doi.org/10.1002/advs.202301923 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Noh, Jungchul Jekal, Suk Yoon, Chang‐Min Polyaniline‐Coated Mesoporous Carbon Nanosheets with Fast Capacitive Energy Storage in Symmetric Supercapacitors |
title | Polyaniline‐Coated Mesoporous Carbon Nanosheets with Fast Capacitive Energy Storage in Symmetric Supercapacitors |
title_full | Polyaniline‐Coated Mesoporous Carbon Nanosheets with Fast Capacitive Energy Storage in Symmetric Supercapacitors |
title_fullStr | Polyaniline‐Coated Mesoporous Carbon Nanosheets with Fast Capacitive Energy Storage in Symmetric Supercapacitors |
title_full_unstemmed | Polyaniline‐Coated Mesoporous Carbon Nanosheets with Fast Capacitive Energy Storage in Symmetric Supercapacitors |
title_short | Polyaniline‐Coated Mesoporous Carbon Nanosheets with Fast Capacitive Energy Storage in Symmetric Supercapacitors |
title_sort | polyaniline‐coated mesoporous carbon nanosheets with fast capacitive energy storage in symmetric supercapacitors |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375140/ https://www.ncbi.nlm.nih.gov/pubmed/37162216 http://dx.doi.org/10.1002/advs.202301923 |
work_keys_str_mv | AT nohjungchul polyanilinecoatedmesoporouscarbonnanosheetswithfastcapacitiveenergystorageinsymmetricsupercapacitors AT jekalsuk polyanilinecoatedmesoporouscarbonnanosheetswithfastcapacitiveenergystorageinsymmetricsupercapacitors AT yoonchangmin polyanilinecoatedmesoporouscarbonnanosheetswithfastcapacitiveenergystorageinsymmetricsupercapacitors |