Cargando…

Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks

For gas separation and catalysis by metal‐organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Shuya, Huang, Xiaoshan, Situ, Yizhen, Huang, Qiuhong, Guan, Kexin, Huang, Jiaxin, Wang, Wei, Bai, Xiangning, Liu, Zili, Wu, Yufang, Qiao, Zhiwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375163/
https://www.ncbi.nlm.nih.gov/pubmed/37166040
http://dx.doi.org/10.1002/advs.202301461
_version_ 1785078975918243840
author Guo, Shuya
Huang, Xiaoshan
Situ, Yizhen
Huang, Qiuhong
Guan, Kexin
Huang, Jiaxin
Wang, Wei
Bai, Xiangning
Liu, Zili
Wu, Yufang
Qiao, Zhiwei
author_facet Guo, Shuya
Huang, Xiaoshan
Situ, Yizhen
Huang, Qiuhong
Guan, Kexin
Huang, Jiaxin
Wang, Wei
Bai, Xiangning
Liu, Zili
Wu, Yufang
Qiao, Zhiwei
author_sort Guo, Shuya
collection PubMed
description For gas separation and catalysis by metal‐organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient boosting machine (LGBM), is trained to predict the molecular diffusivity and selectivity of 9 gases (Kr, Xe, CH(4), N(2), H(2)S, O(2), CO(2), H(2), and He). For these 9 gases, LGBM displays high accuracy (average R(2) = 0.962) and superior extrapolation for the diffusivity of C(2)H(6). And this model calculation is five orders of magnitude faster than molecular dynamics (MD) simulations. Subsequently, using the trained LGBM model, an interactive desktop application is developed that can help researchers quickly and accurately calculate the diffusion of molecules in porous crystal materials. Finally, the authors find the difference in the molecular polarizability (ΔPol) is the key factor governing the diffusion selectivity by combining the trained LGBM model with the Shapley additive explanation (SHAP). By the calculation of interpretable ML, the optimal MOFs are selected for separating binary gas mixtures and CO(2) methanation. This work provides a new direction for exploring the structure‐property relationships of MOFs and realizing the rapid calculation of molecular diffusivity.
format Online
Article
Text
id pubmed-10375163
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-103751632023-07-29 Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks Guo, Shuya Huang, Xiaoshan Situ, Yizhen Huang, Qiuhong Guan, Kexin Huang, Jiaxin Wang, Wei Bai, Xiangning Liu, Zili Wu, Yufang Qiao, Zhiwei Adv Sci (Weinh) Research Articles For gas separation and catalysis by metal‐organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient boosting machine (LGBM), is trained to predict the molecular diffusivity and selectivity of 9 gases (Kr, Xe, CH(4), N(2), H(2)S, O(2), CO(2), H(2), and He). For these 9 gases, LGBM displays high accuracy (average R(2) = 0.962) and superior extrapolation for the diffusivity of C(2)H(6). And this model calculation is five orders of magnitude faster than molecular dynamics (MD) simulations. Subsequently, using the trained LGBM model, an interactive desktop application is developed that can help researchers quickly and accurately calculate the diffusion of molecules in porous crystal materials. Finally, the authors find the difference in the molecular polarizability (ΔPol) is the key factor governing the diffusion selectivity by combining the trained LGBM model with the Shapley additive explanation (SHAP). By the calculation of interpretable ML, the optimal MOFs are selected for separating binary gas mixtures and CO(2) methanation. This work provides a new direction for exploring the structure‐property relationships of MOFs and realizing the rapid calculation of molecular diffusivity. John Wiley and Sons Inc. 2023-05-11 /pmc/articles/PMC10375163/ /pubmed/37166040 http://dx.doi.org/10.1002/advs.202301461 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Guo, Shuya
Huang, Xiaoshan
Situ, Yizhen
Huang, Qiuhong
Guan, Kexin
Huang, Jiaxin
Wang, Wei
Bai, Xiangning
Liu, Zili
Wu, Yufang
Qiao, Zhiwei
Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks
title Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks
title_full Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks
title_fullStr Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks
title_full_unstemmed Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks
title_short Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks
title_sort interpretable machine‐learning and big data mining to predict gas diffusivity in metal‐organic frameworks
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375163/
https://www.ncbi.nlm.nih.gov/pubmed/37166040
http://dx.doi.org/10.1002/advs.202301461
work_keys_str_mv AT guoshuya interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT huangxiaoshan interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT situyizhen interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT huangqiuhong interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT guankexin interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT huangjiaxin interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT wangwei interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT baixiangning interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT liuzili interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT wuyufang interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks
AT qiaozhiwei interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks