Cargando…
Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks
For gas separation and catalysis by metal‐organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375163/ https://www.ncbi.nlm.nih.gov/pubmed/37166040 http://dx.doi.org/10.1002/advs.202301461 |
_version_ | 1785078975918243840 |
---|---|
author | Guo, Shuya Huang, Xiaoshan Situ, Yizhen Huang, Qiuhong Guan, Kexin Huang, Jiaxin Wang, Wei Bai, Xiangning Liu, Zili Wu, Yufang Qiao, Zhiwei |
author_facet | Guo, Shuya Huang, Xiaoshan Situ, Yizhen Huang, Qiuhong Guan, Kexin Huang, Jiaxin Wang, Wei Bai, Xiangning Liu, Zili Wu, Yufang Qiao, Zhiwei |
author_sort | Guo, Shuya |
collection | PubMed |
description | For gas separation and catalysis by metal‐organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient boosting machine (LGBM), is trained to predict the molecular diffusivity and selectivity of 9 gases (Kr, Xe, CH(4), N(2), H(2)S, O(2), CO(2), H(2), and He). For these 9 gases, LGBM displays high accuracy (average R(2) = 0.962) and superior extrapolation for the diffusivity of C(2)H(6). And this model calculation is five orders of magnitude faster than molecular dynamics (MD) simulations. Subsequently, using the trained LGBM model, an interactive desktop application is developed that can help researchers quickly and accurately calculate the diffusion of molecules in porous crystal materials. Finally, the authors find the difference in the molecular polarizability (ΔPol) is the key factor governing the diffusion selectivity by combining the trained LGBM model with the Shapley additive explanation (SHAP). By the calculation of interpretable ML, the optimal MOFs are selected for separating binary gas mixtures and CO(2) methanation. This work provides a new direction for exploring the structure‐property relationships of MOFs and realizing the rapid calculation of molecular diffusivity. |
format | Online Article Text |
id | pubmed-10375163 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103751632023-07-29 Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks Guo, Shuya Huang, Xiaoshan Situ, Yizhen Huang, Qiuhong Guan, Kexin Huang, Jiaxin Wang, Wei Bai, Xiangning Liu, Zili Wu, Yufang Qiao, Zhiwei Adv Sci (Weinh) Research Articles For gas separation and catalysis by metal‐organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient boosting machine (LGBM), is trained to predict the molecular diffusivity and selectivity of 9 gases (Kr, Xe, CH(4), N(2), H(2)S, O(2), CO(2), H(2), and He). For these 9 gases, LGBM displays high accuracy (average R(2) = 0.962) and superior extrapolation for the diffusivity of C(2)H(6). And this model calculation is five orders of magnitude faster than molecular dynamics (MD) simulations. Subsequently, using the trained LGBM model, an interactive desktop application is developed that can help researchers quickly and accurately calculate the diffusion of molecules in porous crystal materials. Finally, the authors find the difference in the molecular polarizability (ΔPol) is the key factor governing the diffusion selectivity by combining the trained LGBM model with the Shapley additive explanation (SHAP). By the calculation of interpretable ML, the optimal MOFs are selected for separating binary gas mixtures and CO(2) methanation. This work provides a new direction for exploring the structure‐property relationships of MOFs and realizing the rapid calculation of molecular diffusivity. John Wiley and Sons Inc. 2023-05-11 /pmc/articles/PMC10375163/ /pubmed/37166040 http://dx.doi.org/10.1002/advs.202301461 Text en © 2023 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Guo, Shuya Huang, Xiaoshan Situ, Yizhen Huang, Qiuhong Guan, Kexin Huang, Jiaxin Wang, Wei Bai, Xiangning Liu, Zili Wu, Yufang Qiao, Zhiwei Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks |
title | Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks |
title_full | Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks |
title_fullStr | Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks |
title_full_unstemmed | Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks |
title_short | Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks |
title_sort | interpretable machine‐learning and big data mining to predict gas diffusivity in metal‐organic frameworks |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375163/ https://www.ncbi.nlm.nih.gov/pubmed/37166040 http://dx.doi.org/10.1002/advs.202301461 |
work_keys_str_mv | AT guoshuya interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT huangxiaoshan interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT situyizhen interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT huangqiuhong interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT guankexin interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT huangjiaxin interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT wangwei interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT baixiangning interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT liuzili interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT wuyufang interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks AT qiaozhiwei interpretablemachinelearningandbigdataminingtopredictgasdiffusivityinmetalorganicframeworks |