Cargando…
Interpretable Machine‐Learning and Big Data Mining to Predict Gas Diffusivity in Metal‐Organic Frameworks
For gas separation and catalysis by metal‐organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient...
Autores principales: | Guo, Shuya, Huang, Xiaoshan, Situ, Yizhen, Huang, Qiuhong, Guan, Kexin, Huang, Jiaxin, Wang, Wei, Bai, Xiangning, Liu, Zili, Wu, Yufang, Qiao, Zhiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375163/ https://www.ncbi.nlm.nih.gov/pubmed/37166040 http://dx.doi.org/10.1002/advs.202301461 |
Ejemplares similares
-
Large-Scale Screening and Machine Learning for Metal–Organic Framework Membranes to Capture CO(2) from Flue Gas
por: Situ, Yizhen, et al.
Publicado: (2022) -
Connotation, characteristics and framework of coal mine safety big data
por: Qiao, Wanguan, et al.
Publicado: (2022) -
Computational Screening of Metal–Organic Framework Membranes for the Separation of 15 Gas Mixtures
por: Yang, Wenyuan, et al.
Publicado: (2019) -
SparkText: Biomedical Text Mining on Big Data Framework
por: Ye, Zhan, et al.
Publicado: (2016) -
Social big data mining
por: Ishikawa, Hiroshi
Publicado: (2015)