Cargando…

Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique

[Image: see text] Understanding phonon transport and thermal conductivity of layered materials is not only critical for thermal management and thermoelectric energy conversion but also essential for developing future optoelectronic devices. Optothermal Raman characterization has been a key method to...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodriguez-Fernandez, Carlos, Nieminen, Arttu, Ahmed, Faisal, Pietila, Jesse, Lipsanen, Harri, Caglayan, Humeyra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375478/
https://www.ncbi.nlm.nih.gov/pubmed/37435778
http://dx.doi.org/10.1021/acsami.3c06134
_version_ 1785079045408423936
author Rodriguez-Fernandez, Carlos
Nieminen, Arttu
Ahmed, Faisal
Pietila, Jesse
Lipsanen, Harri
Caglayan, Humeyra
author_facet Rodriguez-Fernandez, Carlos
Nieminen, Arttu
Ahmed, Faisal
Pietila, Jesse
Lipsanen, Harri
Caglayan, Humeyra
author_sort Rodriguez-Fernandez, Carlos
collection PubMed
description [Image: see text] Understanding phonon transport and thermal conductivity of layered materials is not only critical for thermal management and thermoelectric energy conversion but also essential for developing future optoelectronic devices. Optothermal Raman characterization has been a key method to identify the properties of layered materials, especially transition-metal dichalcogenides. This work investigates the thermal properties of suspended and supported MoTe(2) thin films using the optothermal Raman technique. We also report the investigation of the interfacial thermal conductance between the MoTe(2) crystal and the silicon substrate. To extract the thermal conductivity of the samples, temperature- and power-dependent measurements of the in-plane E(2g)(1) and out-of-plane A(1g) optical phonon modes were performed. The results show remarkably low in-plane thermal conductivities at room temperature, at around 5.16 ± 0.24 W/m·K and 3.72 ± 0.26 W/m·K for the E(2g)(1) and the A(1g) modes, respectively, for the 17 nm thick sample. These results provide valuable input for the design of electronic and thermal MoTe(2)-based devices where thermal management is vital.
format Online
Article
Text
id pubmed-10375478
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-103754782023-07-29 Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique Rodriguez-Fernandez, Carlos Nieminen, Arttu Ahmed, Faisal Pietila, Jesse Lipsanen, Harri Caglayan, Humeyra ACS Appl Mater Interfaces [Image: see text] Understanding phonon transport and thermal conductivity of layered materials is not only critical for thermal management and thermoelectric energy conversion but also essential for developing future optoelectronic devices. Optothermal Raman characterization has been a key method to identify the properties of layered materials, especially transition-metal dichalcogenides. This work investigates the thermal properties of suspended and supported MoTe(2) thin films using the optothermal Raman technique. We also report the investigation of the interfacial thermal conductance between the MoTe(2) crystal and the silicon substrate. To extract the thermal conductivity of the samples, temperature- and power-dependent measurements of the in-plane E(2g)(1) and out-of-plane A(1g) optical phonon modes were performed. The results show remarkably low in-plane thermal conductivities at room temperature, at around 5.16 ± 0.24 W/m·K and 3.72 ± 0.26 W/m·K for the E(2g)(1) and the A(1g) modes, respectively, for the 17 nm thick sample. These results provide valuable input for the design of electronic and thermal MoTe(2)-based devices where thermal management is vital. American Chemical Society 2023-07-12 /pmc/articles/PMC10375478/ /pubmed/37435778 http://dx.doi.org/10.1021/acsami.3c06134 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Rodriguez-Fernandez, Carlos
Nieminen, Arttu
Ahmed, Faisal
Pietila, Jesse
Lipsanen, Harri
Caglayan, Humeyra
Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique
title Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique
title_full Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique
title_fullStr Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique
title_full_unstemmed Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique
title_short Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique
title_sort unraveling thermal transport properties of mote(2) thin films using the optothermal raman technique
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375478/
https://www.ncbi.nlm.nih.gov/pubmed/37435778
http://dx.doi.org/10.1021/acsami.3c06134
work_keys_str_mv AT rodriguezfernandezcarlos unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique
AT nieminenarttu unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique
AT ahmedfaisal unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique
AT pietilajesse unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique
AT lipsanenharri unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique
AT caglayanhumeyra unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique