Cargando…
Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique
[Image: see text] Understanding phonon transport and thermal conductivity of layered materials is not only critical for thermal management and thermoelectric energy conversion but also essential for developing future optoelectronic devices. Optothermal Raman characterization has been a key method to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375478/ https://www.ncbi.nlm.nih.gov/pubmed/37435778 http://dx.doi.org/10.1021/acsami.3c06134 |
_version_ | 1785079045408423936 |
---|---|
author | Rodriguez-Fernandez, Carlos Nieminen, Arttu Ahmed, Faisal Pietila, Jesse Lipsanen, Harri Caglayan, Humeyra |
author_facet | Rodriguez-Fernandez, Carlos Nieminen, Arttu Ahmed, Faisal Pietila, Jesse Lipsanen, Harri Caglayan, Humeyra |
author_sort | Rodriguez-Fernandez, Carlos |
collection | PubMed |
description | [Image: see text] Understanding phonon transport and thermal conductivity of layered materials is not only critical for thermal management and thermoelectric energy conversion but also essential for developing future optoelectronic devices. Optothermal Raman characterization has been a key method to identify the properties of layered materials, especially transition-metal dichalcogenides. This work investigates the thermal properties of suspended and supported MoTe(2) thin films using the optothermal Raman technique. We also report the investigation of the interfacial thermal conductance between the MoTe(2) crystal and the silicon substrate. To extract the thermal conductivity of the samples, temperature- and power-dependent measurements of the in-plane E(2g)(1) and out-of-plane A(1g) optical phonon modes were performed. The results show remarkably low in-plane thermal conductivities at room temperature, at around 5.16 ± 0.24 W/m·K and 3.72 ± 0.26 W/m·K for the E(2g)(1) and the A(1g) modes, respectively, for the 17 nm thick sample. These results provide valuable input for the design of electronic and thermal MoTe(2)-based devices where thermal management is vital. |
format | Online Article Text |
id | pubmed-10375478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-103754782023-07-29 Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique Rodriguez-Fernandez, Carlos Nieminen, Arttu Ahmed, Faisal Pietila, Jesse Lipsanen, Harri Caglayan, Humeyra ACS Appl Mater Interfaces [Image: see text] Understanding phonon transport and thermal conductivity of layered materials is not only critical for thermal management and thermoelectric energy conversion but also essential for developing future optoelectronic devices. Optothermal Raman characterization has been a key method to identify the properties of layered materials, especially transition-metal dichalcogenides. This work investigates the thermal properties of suspended and supported MoTe(2) thin films using the optothermal Raman technique. We also report the investigation of the interfacial thermal conductance between the MoTe(2) crystal and the silicon substrate. To extract the thermal conductivity of the samples, temperature- and power-dependent measurements of the in-plane E(2g)(1) and out-of-plane A(1g) optical phonon modes were performed. The results show remarkably low in-plane thermal conductivities at room temperature, at around 5.16 ± 0.24 W/m·K and 3.72 ± 0.26 W/m·K for the E(2g)(1) and the A(1g) modes, respectively, for the 17 nm thick sample. These results provide valuable input for the design of electronic and thermal MoTe(2)-based devices where thermal management is vital. American Chemical Society 2023-07-12 /pmc/articles/PMC10375478/ /pubmed/37435778 http://dx.doi.org/10.1021/acsami.3c06134 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Rodriguez-Fernandez, Carlos Nieminen, Arttu Ahmed, Faisal Pietila, Jesse Lipsanen, Harri Caglayan, Humeyra Unraveling Thermal Transport Properties of MoTe(2) Thin Films Using the Optothermal Raman Technique |
title | Unraveling Thermal
Transport Properties of MoTe(2) Thin Films Using the Optothermal
Raman Technique |
title_full | Unraveling Thermal
Transport Properties of MoTe(2) Thin Films Using the Optothermal
Raman Technique |
title_fullStr | Unraveling Thermal
Transport Properties of MoTe(2) Thin Films Using the Optothermal
Raman Technique |
title_full_unstemmed | Unraveling Thermal
Transport Properties of MoTe(2) Thin Films Using the Optothermal
Raman Technique |
title_short | Unraveling Thermal
Transport Properties of MoTe(2) Thin Films Using the Optothermal
Raman Technique |
title_sort | unraveling thermal
transport properties of mote(2) thin films using the optothermal
raman technique |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375478/ https://www.ncbi.nlm.nih.gov/pubmed/37435778 http://dx.doi.org/10.1021/acsami.3c06134 |
work_keys_str_mv | AT rodriguezfernandezcarlos unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique AT nieminenarttu unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique AT ahmedfaisal unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique AT pietilajesse unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique AT lipsanenharri unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique AT caglayanhumeyra unravelingthermaltransportpropertiesofmote2thinfilmsusingtheoptothermalramantechnique |