Cargando…
Hetnet connectivity search provides rapid insights into how biomedical entities are related
BACKGROUND: Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 million edges...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375517/ https://www.ncbi.nlm.nih.gov/pubmed/37503959 http://dx.doi.org/10.1093/gigascience/giad047 |
_version_ | 1785079050727849984 |
---|---|
author | Himmelstein, Daniel S Zietz, Michael Rubinetti, Vincent Kloster, Kyle Heil, Benjamin J Alquaddoomi, Faisal Hu, Dongbo Nicholson, David N Hao, Yun Sullivan, Blair D Nagle, Michael W Greene, Casey S |
author_facet | Himmelstein, Daniel S Zietz, Michael Rubinetti, Vincent Kloster, Kyle Heil, Benjamin J Alquaddoomi, Faisal Hu, Dongbo Nicholson, David N Hao, Yun Sullivan, Blair D Nagle, Michael W Greene, Casey S |
author_sort | Himmelstein, Daniel S |
collection | PubMed |
description | BACKGROUND: Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. FINDINGS: We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. CONCLUSION: We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy. |
format | Online Article Text |
id | pubmed-10375517 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-103755172023-07-29 Hetnet connectivity search provides rapid insights into how biomedical entities are related Himmelstein, Daniel S Zietz, Michael Rubinetti, Vincent Kloster, Kyle Heil, Benjamin J Alquaddoomi, Faisal Hu, Dongbo Nicholson, David N Hao, Yun Sullivan, Blair D Nagle, Michael W Greene, Casey S Gigascience Technical Note BACKGROUND: Hetnets, short for “heterogeneous networks,” contain multiple node and relationship types and offer a way to encode biomedical knowledge. One such example, Hetionet, connects 11 types of nodes—including genes, diseases, drugs, pathways, and anatomical structures—with over 2 million edges of 24 types. Previous work has demonstrated that supervised machine learning methods applied to such networks can identify drug repurposing opportunities. However, a training set of known relationships does not exist for many types of node pairs, even when it would be useful to examine how nodes of those types are meaningfully connected. For example, users may be curious about not only how metformin is related to breast cancer but also how a given gene might be involved in insomnia. FINDINGS: We developed a new procedure, termed hetnet connectivity search, that proposes important paths between any 2 nodes without requiring a supervised gold standard. The algorithm behind connectivity search identifies types of paths that occur more frequently than would be expected by chance (based on node degree alone). Several optimizations were required to precompute significant instances of node connectivity at the scale of large knowledge graphs. CONCLUSION: We implemented the method on Hetionet and provide an online interface at https://het.io/search. We provide an open-source implementation of these methods in our new Python package named hetmatpy. Oxford University Press 2023-07-28 /pmc/articles/PMC10375517/ /pubmed/37503959 http://dx.doi.org/10.1093/gigascience/giad047 Text en © The Author(s) 2023. Published by Oxford University Press GigaScience. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Technical Note Himmelstein, Daniel S Zietz, Michael Rubinetti, Vincent Kloster, Kyle Heil, Benjamin J Alquaddoomi, Faisal Hu, Dongbo Nicholson, David N Hao, Yun Sullivan, Blair D Nagle, Michael W Greene, Casey S Hetnet connectivity search provides rapid insights into how biomedical entities are related |
title | Hetnet connectivity search provides rapid insights into how biomedical entities are related |
title_full | Hetnet connectivity search provides rapid insights into how biomedical entities are related |
title_fullStr | Hetnet connectivity search provides rapid insights into how biomedical entities are related |
title_full_unstemmed | Hetnet connectivity search provides rapid insights into how biomedical entities are related |
title_short | Hetnet connectivity search provides rapid insights into how biomedical entities are related |
title_sort | hetnet connectivity search provides rapid insights into how biomedical entities are related |
topic | Technical Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375517/ https://www.ncbi.nlm.nih.gov/pubmed/37503959 http://dx.doi.org/10.1093/gigascience/giad047 |
work_keys_str_mv | AT himmelsteindaniels hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT zietzmichael hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT rubinettivincent hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT klosterkyle hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT heilbenjaminj hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT alquaddoomifaisal hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT hudongbo hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT nicholsondavidn hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT haoyun hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT sullivanblaird hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT naglemichaelw hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated AT greenecaseys hetnetconnectivitysearchprovidesrapidinsightsintohowbiomedicalentitiesarerelated |