Cargando…

LiRA-CD: An open-source dataset for road condition modelling and research

This data article presents the details of the Live Road Assessment Custom Dataset (LiRA-CD), an open-source dataset for road condition modelling and research. The dataset captures GPS trajectories of a fleet of electric vehicles and their time-series data from 50 different sensors collected on 230 k...

Descripción completa

Detalles Bibliográficos
Autores principales: Skar, Asmus, Vestergaard, Anders M., Brüsch, Thea, Pour, Shahrzad, Kindler, Ekkart, Alstrøm, Tommy Sonne, Schlotz, Uwe, Larsen, Jakob Elsborg, Pettinari, Matteo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375556/
https://www.ncbi.nlm.nih.gov/pubmed/37520654
http://dx.doi.org/10.1016/j.dib.2023.109426
_version_ 1785079058574344192
author Skar, Asmus
Vestergaard, Anders M.
Brüsch, Thea
Pour, Shahrzad
Kindler, Ekkart
Alstrøm, Tommy Sonne
Schlotz, Uwe
Larsen, Jakob Elsborg
Pettinari, Matteo
author_facet Skar, Asmus
Vestergaard, Anders M.
Brüsch, Thea
Pour, Shahrzad
Kindler, Ekkart
Alstrøm, Tommy Sonne
Schlotz, Uwe
Larsen, Jakob Elsborg
Pettinari, Matteo
author_sort Skar, Asmus
collection PubMed
description This data article presents the details of the Live Road Assessment Custom Dataset (LiRA-CD), an open-source dataset for road condition modelling and research. The dataset captures GPS trajectories of a fleet of electric vehicles and their time-series data from 50 different sensors collected on 230 km of highway and urban roads in Copenhagen, Denmark. Additionally, road condition measurements were collected by standard survey vehicles, which serve as high-quality reference data. The in-vehicle measurements were collected onboard with an Internet-of-Things (IoT) device, then periodically transmitted before being saved in a database. Researchers can use the dataset for prediction modelling related to standard road condition parameters such as surface friction and texture, road roughness, road damages, and energy consumption. Furthermore, researchers and pavement engineers can use the dataset as a template for future studies and projects, benchmarking the performance of different algorithms and solving problems of the same type. LiRA-CD is freely available and can be accessed at https://doi.org/10.11583/DTU.c.6659909.
format Online
Article
Text
id pubmed-10375556
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-103755562023-07-29 LiRA-CD: An open-source dataset for road condition modelling and research Skar, Asmus Vestergaard, Anders M. Brüsch, Thea Pour, Shahrzad Kindler, Ekkart Alstrøm, Tommy Sonne Schlotz, Uwe Larsen, Jakob Elsborg Pettinari, Matteo Data Brief Data Article This data article presents the details of the Live Road Assessment Custom Dataset (LiRA-CD), an open-source dataset for road condition modelling and research. The dataset captures GPS trajectories of a fleet of electric vehicles and their time-series data from 50 different sensors collected on 230 km of highway and urban roads in Copenhagen, Denmark. Additionally, road condition measurements were collected by standard survey vehicles, which serve as high-quality reference data. The in-vehicle measurements were collected onboard with an Internet-of-Things (IoT) device, then periodically transmitted before being saved in a database. Researchers can use the dataset for prediction modelling related to standard road condition parameters such as surface friction and texture, road roughness, road damages, and energy consumption. Furthermore, researchers and pavement engineers can use the dataset as a template for future studies and projects, benchmarking the performance of different algorithms and solving problems of the same type. LiRA-CD is freely available and can be accessed at https://doi.org/10.11583/DTU.c.6659909. Elsevier 2023-07-17 /pmc/articles/PMC10375556/ /pubmed/37520654 http://dx.doi.org/10.1016/j.dib.2023.109426 Text en © 2023 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Data Article
Skar, Asmus
Vestergaard, Anders M.
Brüsch, Thea
Pour, Shahrzad
Kindler, Ekkart
Alstrøm, Tommy Sonne
Schlotz, Uwe
Larsen, Jakob Elsborg
Pettinari, Matteo
LiRA-CD: An open-source dataset for road condition modelling and research
title LiRA-CD: An open-source dataset for road condition modelling and research
title_full LiRA-CD: An open-source dataset for road condition modelling and research
title_fullStr LiRA-CD: An open-source dataset for road condition modelling and research
title_full_unstemmed LiRA-CD: An open-source dataset for road condition modelling and research
title_short LiRA-CD: An open-source dataset for road condition modelling and research
title_sort lira-cd: an open-source dataset for road condition modelling and research
topic Data Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375556/
https://www.ncbi.nlm.nih.gov/pubmed/37520654
http://dx.doi.org/10.1016/j.dib.2023.109426
work_keys_str_mv AT skarasmus liracdanopensourcedatasetforroadconditionmodellingandresearch
AT vestergaardandersm liracdanopensourcedatasetforroadconditionmodellingandresearch
AT bruschthea liracdanopensourcedatasetforroadconditionmodellingandresearch
AT pourshahrzad liracdanopensourcedatasetforroadconditionmodellingandresearch
AT kindlerekkart liracdanopensourcedatasetforroadconditionmodellingandresearch
AT alstrømtommysonne liracdanopensourcedatasetforroadconditionmodellingandresearch
AT schlotzuwe liracdanopensourcedatasetforroadconditionmodellingandresearch
AT larsenjakobelsborg liracdanopensourcedatasetforroadconditionmodellingandresearch
AT pettinarimatteo liracdanopensourcedatasetforroadconditionmodellingandresearch