Cargando…
Radiation Pressure Backaction on a Hexagonal Boron Nitride Nanomechanical Resonator
[Image: see text] Hexagonal boron nitride (hBN) is a van der Waals material with excellent mechanical properties hosting quantum emitters and optically active spin defects, with several of them being sensitive to strain. Establishing optomechanical control of hBN will enable hybrid quantum devices t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375595/ https://www.ncbi.nlm.nih.gov/pubmed/37460106 http://dx.doi.org/10.1021/acs.nanolett.3c00544 |
_version_ | 1785079066740654080 |
---|---|
author | Sánchez Arribas, Irene Taniguchi, Takashi Watanabe, Kenji Weig, Eva M. |
author_facet | Sánchez Arribas, Irene Taniguchi, Takashi Watanabe, Kenji Weig, Eva M. |
author_sort | Sánchez Arribas, Irene |
collection | PubMed |
description | [Image: see text] Hexagonal boron nitride (hBN) is a van der Waals material with excellent mechanical properties hosting quantum emitters and optically active spin defects, with several of them being sensitive to strain. Establishing optomechanical control of hBN will enable hybrid quantum devices that combine the spin degree of freedom with the cavity optomechanical toolbox. In this Letter, we report the first observation of radiation pressure backaction at telecom wavelengths with a hBN drum-head mechanical resonator. The thermomechanical motion of the resonator is coupled to the optical mode of a high finesse fiber-based Fabry–Pérot microcavity in a membrane-in-the-middle configuration. We are able to resolve the optical spring effect and optomechanical damping with a single photon coupling strength of g(0)/2π = 1200 Hz. Our results pave the way for tailoring the mechanical properties of hBN resonators with light. |
format | Online Article Text |
id | pubmed-10375595 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-103755952023-07-29 Radiation Pressure Backaction on a Hexagonal Boron Nitride Nanomechanical Resonator Sánchez Arribas, Irene Taniguchi, Takashi Watanabe, Kenji Weig, Eva M. Nano Lett [Image: see text] Hexagonal boron nitride (hBN) is a van der Waals material with excellent mechanical properties hosting quantum emitters and optically active spin defects, with several of them being sensitive to strain. Establishing optomechanical control of hBN will enable hybrid quantum devices that combine the spin degree of freedom with the cavity optomechanical toolbox. In this Letter, we report the first observation of radiation pressure backaction at telecom wavelengths with a hBN drum-head mechanical resonator. The thermomechanical motion of the resonator is coupled to the optical mode of a high finesse fiber-based Fabry–Pérot microcavity in a membrane-in-the-middle configuration. We are able to resolve the optical spring effect and optomechanical damping with a single photon coupling strength of g(0)/2π = 1200 Hz. Our results pave the way for tailoring the mechanical properties of hBN resonators with light. American Chemical Society 2023-07-17 /pmc/articles/PMC10375595/ /pubmed/37460106 http://dx.doi.org/10.1021/acs.nanolett.3c00544 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Sánchez Arribas, Irene Taniguchi, Takashi Watanabe, Kenji Weig, Eva M. Radiation Pressure Backaction on a Hexagonal Boron Nitride Nanomechanical Resonator |
title | Radiation Pressure
Backaction on a Hexagonal Boron
Nitride Nanomechanical Resonator |
title_full | Radiation Pressure
Backaction on a Hexagonal Boron
Nitride Nanomechanical Resonator |
title_fullStr | Radiation Pressure
Backaction on a Hexagonal Boron
Nitride Nanomechanical Resonator |
title_full_unstemmed | Radiation Pressure
Backaction on a Hexagonal Boron
Nitride Nanomechanical Resonator |
title_short | Radiation Pressure
Backaction on a Hexagonal Boron
Nitride Nanomechanical Resonator |
title_sort | radiation pressure
backaction on a hexagonal boron
nitride nanomechanical resonator |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375595/ https://www.ncbi.nlm.nih.gov/pubmed/37460106 http://dx.doi.org/10.1021/acs.nanolett.3c00544 |
work_keys_str_mv | AT sanchezarribasirene radiationpressurebackactiononahexagonalboronnitridenanomechanicalresonator AT taniguchitakashi radiationpressurebackactiononahexagonalboronnitridenanomechanicalresonator AT watanabekenji radiationpressurebackactiononahexagonalboronnitridenanomechanicalresonator AT weigevam radiationpressurebackactiononahexagonalboronnitridenanomechanicalresonator |