Cargando…

Profiling A-to-I RNA editing during mouse somatic reprogramming at the single-cell level

Mouse somatic cells can be reprogrammed into induced pluripotent stem cells through a highly heterogeneous process regulated by numerous biological factors, including adenosine-to-inosine (A-to-I) RNA editing. In this study, we analyzed A-to-I RNA editing sites using a single-cell RNA sequencing (sc...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Tianhang, Jiang, Siyuan, Wang, Xiaoshan, Hou, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375800/
https://www.ncbi.nlm.nih.gov/pubmed/37519753
http://dx.doi.org/10.1016/j.heliyon.2023.e18133
Descripción
Sumario:Mouse somatic cells can be reprogrammed into induced pluripotent stem cells through a highly heterogeneous process regulated by numerous biological factors, including adenosine-to-inosine (A-to-I) RNA editing. In this study, we analyzed A-to-I RNA editing sites using a single-cell RNA sequencing (scRNA-seq) dataset with high-depth and full-length coverage. Our method revealed that A-to-I RNA editing frequency varied widely at the single-cell level and underwent dynamic changes. We also found that A-to-I RNA editing level was correlated with the expression of the RNA editing enzyme ADAR1. The analysis combined with gene ontology (GO) enrichment revealed that ADAR1-dependent A-to-I editing may downregulate the expression levels of Igtp, Irgm2, Mndal, Ifi202b, and Tapbp in the early stage, to inhibit the pathways of cellular response to interferon-beta and regulation of protein complex stability to promote mesenchymal-epithelial transition (MET). Notably, we identified a negative correlation between A-to-I RNA editing frequency and the expression of certain genes, such as Nras, Ube2l6, Zfp987, and Adsl.