Cargando…
Semi-Supervised Segmentation of Interstitial Lung Disease Patterns from CT Images via Self-Training with Selective Re-Training
Accurate segmentation of interstitial lung disease (ILD) patterns from computed tomography (CT) images is an essential prerequisite to treatment and follow-up. However, it is highly time-consuming for radiologists to pixel-by-pixel segment ILD patterns from CT scans with hundreds of slices. Conseque...
Autores principales: | Cai, Guang-Wei, Liu, Yun-Bi, Feng, Qian-Jin, Liang, Rui-Hong, Zeng, Qing-Si, Deng, Yu, Yang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375953/ https://www.ncbi.nlm.nih.gov/pubmed/37508857 http://dx.doi.org/10.3390/bioengineering10070830 |
Ejemplares similares
-
Self-Ensembling Co-Training Framework for Semi-Supervised COVID-19 CT Segmentation
Publicado: (2021) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-Supervised Training for Positioning of Welding Seams
por: Zhang, Wenbin, et al.
Publicado: (2021) -
Semi-Self-Supervised Learning for Semantic Segmentation in Images with Dense Patterns
por: Najafian, Keyhan, et al.
Publicado: (2023) -
DS6, Deformation-Aware Semi-Supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data
por: Chatterjee, Soumick, et al.
Publicado: (2022)