Cargando…

An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients

The complex pathobiology of lung cancer, and its spread worldwide, has prompted research studies that combine radiomic and genomic approaches. Indeed, the early identification of genetic alterations and driver mutations affecting the tumor is fundamental for correctly formulating the prognosis and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Prencipe, Berardino, Delprete, Claudia, Garolla, Emilio, Corallo, Fabio, Gravina, Matteo, Natalicchio, Maria Iole, Buongiorno, Domenico, Bevilacqua, Vitoantonio, Altini, Nicola, Brunetti, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376018/
https://www.ncbi.nlm.nih.gov/pubmed/37508774
http://dx.doi.org/10.3390/bioengineering10070747
_version_ 1785079167596888064
author Prencipe, Berardino
Delprete, Claudia
Garolla, Emilio
Corallo, Fabio
Gravina, Matteo
Natalicchio, Maria Iole
Buongiorno, Domenico
Bevilacqua, Vitoantonio
Altini, Nicola
Brunetti, Antonio
author_facet Prencipe, Berardino
Delprete, Claudia
Garolla, Emilio
Corallo, Fabio
Gravina, Matteo
Natalicchio, Maria Iole
Buongiorno, Domenico
Bevilacqua, Vitoantonio
Altini, Nicola
Brunetti, Antonio
author_sort Prencipe, Berardino
collection PubMed
description The complex pathobiology of lung cancer, and its spread worldwide, has prompted research studies that combine radiomic and genomic approaches. Indeed, the early identification of genetic alterations and driver mutations affecting the tumor is fundamental for correctly formulating the prognosis and therapeutic response. In this work, we propose a radiogenomic workflow to detect the presence of KRAS and EGFR mutations using radiomic features extracted from computed tomography images of patients affected by lung adenocarcinoma. To this aim, we investigated several feature selection algorithms to identify the most significant and uncorrelated sets of radiomic features and different classification models to reveal the mutational status. Then, we employed the SHAP (SHapley Additive exPlanations) technique to increase the understanding of the contribution given by specific radiomic features to the identification of the investigated mutations. Two cohorts of patients with lung adenocarcinoma were used for the study. The first one, obtained from the Cancer Imaging Archive (TCIA), consisted of 60 cases (25% EGFR, 23% KRAS); the second one, provided by the Azienda Ospedaliero-Universitaria ’Ospedali Riuniti’ of Foggia, was composed of 55 cases (16% EGFR, 28% KRAS). The best-performing models proposed in our study achieved an AUC of 0.69 and 0.82 on the validation set for predicting the mutational status of EGFR and KRAS, respectively. The Multi-layer Perceptron model emerged as the top-performing model for both oncogenes, in some cases outperforming the state of the art. This study showed that radiomic features can be associated with EGFR and KRAS mutational status in patients with lung adenocarcinoma.
format Online
Article
Text
id pubmed-10376018
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103760182023-07-29 An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients Prencipe, Berardino Delprete, Claudia Garolla, Emilio Corallo, Fabio Gravina, Matteo Natalicchio, Maria Iole Buongiorno, Domenico Bevilacqua, Vitoantonio Altini, Nicola Brunetti, Antonio Bioengineering (Basel) Article The complex pathobiology of lung cancer, and its spread worldwide, has prompted research studies that combine radiomic and genomic approaches. Indeed, the early identification of genetic alterations and driver mutations affecting the tumor is fundamental for correctly formulating the prognosis and therapeutic response. In this work, we propose a radiogenomic workflow to detect the presence of KRAS and EGFR mutations using radiomic features extracted from computed tomography images of patients affected by lung adenocarcinoma. To this aim, we investigated several feature selection algorithms to identify the most significant and uncorrelated sets of radiomic features and different classification models to reveal the mutational status. Then, we employed the SHAP (SHapley Additive exPlanations) technique to increase the understanding of the contribution given by specific radiomic features to the identification of the investigated mutations. Two cohorts of patients with lung adenocarcinoma were used for the study. The first one, obtained from the Cancer Imaging Archive (TCIA), consisted of 60 cases (25% EGFR, 23% KRAS); the second one, provided by the Azienda Ospedaliero-Universitaria ’Ospedali Riuniti’ of Foggia, was composed of 55 cases (16% EGFR, 28% KRAS). The best-performing models proposed in our study achieved an AUC of 0.69 and 0.82 on the validation set for predicting the mutational status of EGFR and KRAS, respectively. The Multi-layer Perceptron model emerged as the top-performing model for both oncogenes, in some cases outperforming the state of the art. This study showed that radiomic features can be associated with EGFR and KRAS mutational status in patients with lung adenocarcinoma. MDPI 2023-06-21 /pmc/articles/PMC10376018/ /pubmed/37508774 http://dx.doi.org/10.3390/bioengineering10070747 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Prencipe, Berardino
Delprete, Claudia
Garolla, Emilio
Corallo, Fabio
Gravina, Matteo
Natalicchio, Maria Iole
Buongiorno, Domenico
Bevilacqua, Vitoantonio
Altini, Nicola
Brunetti, Antonio
An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients
title An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients
title_full An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients
title_fullStr An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients
title_full_unstemmed An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients
title_short An Explainable Radiogenomic Framework to Predict Mutational Status of KRAS and EGFR in Lung Adenocarcinoma Patients
title_sort explainable radiogenomic framework to predict mutational status of kras and egfr in lung adenocarcinoma patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376018/
https://www.ncbi.nlm.nih.gov/pubmed/37508774
http://dx.doi.org/10.3390/bioengineering10070747
work_keys_str_mv AT prencipeberardino anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT delpreteclaudia anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT garollaemilio anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT corallofabio anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT gravinamatteo anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT natalicchiomariaiole anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT buongiornodomenico anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT bevilacquavitoantonio anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT altininicola anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT brunettiantonio anexplainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT prencipeberardino explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT delpreteclaudia explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT garollaemilio explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT corallofabio explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT gravinamatteo explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT natalicchiomariaiole explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT buongiornodomenico explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT bevilacquavitoantonio explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT altininicola explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients
AT brunettiantonio explainableradiogenomicframeworktopredictmutationalstatusofkrasandegfrinlungadenocarcinomapatients