Cargando…
Deep Learning Techniques with Genomic Data in Cancer Prognosis: A Comprehensive Review of the 2021–2023 Literature
SIMPLE SUMMARY: The ongoing advancements in deep learning, notably its use in predicting cancer survival through genomic data analysis, calls for an up-to-date review. This paper inspects notable works from 2021 to 2023, underlining essential developments and their implications in the field. We offe...
Autor principal: | Lee, Minhyeok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376033/ https://www.ncbi.nlm.nih.gov/pubmed/37508326 http://dx.doi.org/10.3390/biology12070893 |
Ejemplares similares
-
Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review
por: Lee, Minhyeok
Publicado: (2023) -
Recent Advancements in Deep Learning Using Whole Slide Imaging for Cancer Prognosis
por: Lee, Minhyeok
Publicado: (2023) -
Deep Learning Approaches for lncRNA-Mediated Mechanisms: A Comprehensive Review of Recent Developments
por: Kim, Yoojoong, et al.
Publicado: (2023) -
Transformer Architecture and Attention Mechanisms in Genome Data Analysis: A Comprehensive Review
por: Choi, Sanghyuk Roy, et al.
Publicado: (2023) -
An Ensemble Deep Learning Model with a Gene Attention Mechanism for Estimating the Prognosis of Low-Grade Glioma
por: Lee, Minhyeok
Publicado: (2022)