Cargando…
Prompt-Based Tuning of Transformer Models for Multi-Center Medical Image Segmentation of Head and Neck Cancer
Medical image segmentation is a vital healthcare endeavor requiring precise and efficient models for appropriate diagnosis and treatment. Vision transformer (ViT)-based segmentation models have shown great performance in accomplishing this task. However, to build a powerful backbone, the self-attent...
Autores principales: | Saeed, Numan, Ridzuan, Muhammad, Majzoub, Roba Al, Yaqub, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376048/ https://www.ncbi.nlm.nih.gov/pubmed/37508906 http://dx.doi.org/10.3390/bioengineering10070879 |
Ejemplares similares
-
Dermatofibrosarcoma protuberans with fibrosarcomatous transformation of the head and neck
por: Angouridakis, Nikolaos, et al.
Publicado: (2011) -
Automatic segmentation of head and neck primary tumors on MRI using a multi-view CNN
por: Schouten, Jens P.E., et al.
Publicado: (2022) -
Head and Neck Cancer Segmentation in FDG PET Images: Performance Comparison of Convolutional Neural Networks and Vision Transformers
por: Xiong, Xiaofan, et al.
Publicado: (2023) -
Transoral surgery for superficial head and neck cancer: National Multi‐Center Survey in Japan
por: Katada, Chikatoshi, et al.
Publicado: (2021) -
Molecular Biomarkers of Malignant Transformation in Head and Neck Dysplasia
por: Ranganath, Kushi, et al.
Publicado: (2022)