Cargando…

Non-Trivial Dynamics in the FizHugh–Rinzel Model and Non-Homogeneous Oscillatory-Excitable Reaction-Diffusions Systems

SIMPLE SUMMARY: This article provides original numerical and mathematical insights about the FHR model and non-homogeneous FitzHugh–Nagumo reaction-diffusion systems. ABSTRACT: This article focuses on the qualitative analysis of complex dynamics arising in a few mathematical models in neuroscience c...

Descripción completa

Detalles Bibliográficos
Autores principales: Ambrosio, Benjamin, Aziz-Alaoui, M. A., Mondal, Argha, Mondal, Arnab, Sharma, Sanjeev K., Upadhyay, Ranjit Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376066/
https://www.ncbi.nlm.nih.gov/pubmed/37508349
http://dx.doi.org/10.3390/biology12070918
Descripción
Sumario:SIMPLE SUMMARY: This article provides original numerical and mathematical insights about the FHR model and non-homogeneous FitzHugh–Nagumo reaction-diffusion systems. ABSTRACT: This article focuses on the qualitative analysis of complex dynamics arising in a few mathematical models in neuroscience context. We first discuss the dynamics arising in the three-dimensional FitzHugh–Rinzel (FHR) model and then illustrate those arising in a class of non-homogeneous FitzHugh–Nagumo (Nh-FHN) reaction-diffusion systems. FHR and Nh-FHN models can be used to generate relevant complex dynamics and wave-propagation phenomena in neuroscience context. Such complex dynamics include canards, mixed-mode oscillations (MMOs), Hopf-bifurcations and their spatially extended counterpart. Our article highlights original methods to characterize these complex dynamics and how they emerge in ordinary differential equations and spatially extended models.