Cargando…
Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification
SIMPLE SUMMARY: This study aims to provide computer-aided diagnosis and valuable biomarkers for autism spectrum disorders by leveraging functional connectivity networks (FCNs) from resting-state functional magnetic resonance imaging data. We propose a novel framework for multi-FCN fusion to adaptive...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376072/ https://www.ncbi.nlm.nih.gov/pubmed/37508401 http://dx.doi.org/10.3390/biology12070971 |
Sumario: | SIMPLE SUMMARY: This study aims to provide computer-aided diagnosis and valuable biomarkers for autism spectrum disorders by leveraging functional connectivity networks (FCNs) from resting-state functional magnetic resonance imaging data. We propose a novel framework for multi-FCN fusion to adaptively learn the fusion weights of component FCNs during the classifer’s learning process, guided by label information. It is simple and has better discriminability for autism spectrum disorder identification. ABSTRACT: Functional connectivity network (FCN) has become a popular tool to identify potential biomarkers for brain dysfunction, such as autism spectrum disorder (ASD). Due to its importance, researchers have proposed many methods to estimate FCNs from resting-state functional MRI (rs-fMRI) data. However, the existing FCN estimation methods usually only capture a single relationship between brain regions of interest (ROIs), e.g., linear correlation, nonlinear correlation, or higher-order correlation, thus failing to model the complex interaction among ROIs in the brain. Additionally, such traditional methods estimate FCNs in an unsupervised way, and the estimation process is independent of the downstream tasks, which makes it difficult to guarantee the optimal performance for ASD identification. To address these issues, in this paper, we propose a multi-FCN fusion framework for rs-fMRI-based ASD classification. Specifically, for each subject, we first estimate multiple FCNs using different methods to encode rich interactions among ROIs from different perspectives. Then, we use the label information (ASD vs. healthy control (HC)) to learn a set of fusion weights for measuring the importance/discrimination of those estimated FCNs. Finally, we apply the adaptively weighted fused FCN on the ABIDE dataset to identify subjects with ASD from HCs. The proposed FCN fusion framework is straightforward to implement and can significantly improve diagnostic accuracy compared to traditional and state-of-the-art methods. |
---|