Cargando…

A Computer Vision-Based Automatic System for Egg Grading and Defect Detection

SIMPLE SUMMARY: Egg defects such as cracks, dirty spots on the eggshell, and blood spots inside the egg can decrease the quality and market value of table eggs. To address this issue, an automatic method based on computer vision technology was developed for grading eggs and determining defects in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xiao, Bist, Ramesh Bahadur, Subedi, Sachin, Chai, Lilong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376079/
https://www.ncbi.nlm.nih.gov/pubmed/37508131
http://dx.doi.org/10.3390/ani13142354
Descripción
Sumario:SIMPLE SUMMARY: Egg defects such as cracks, dirty spots on the eggshell, and blood spots inside the egg can decrease the quality and market value of table eggs. To address this issue, an automatic method based on computer vision technology was developed for grading eggs and determining defects in a cage-free facility. A two-stage model was developed based on RTMDet and random forest networks for predicting egg category and weight in this study. Results show that the best classification accuracy reached 94–96%. ABSTRACT: Defective eggs diminish the value of laying hen production, particularly in cage-free systems with a higher incidence of floor eggs. To enhance quality, machine vision and image processing have facilitated the development of automated grading and defect detection systems. Additionally, egg measurement systems utilize weight-sorting for optimal market value. However, few studies have integrated deep learning and machine vision techniques for combined egg classification and weighting. To address this gap, a two-stage model was developed based on real-time multitask detection (RTMDet) and random forest networks to predict egg category and weight. The model uses convolutional neural network (CNN) and regression techniques were used to perform joint egg classification and weighing. RTMDet was used to sort and extract egg features for classification, and a Random Forest algorithm was used to predict egg weight based on the extracted features (major axis and minor axis). The results of the study showed that the best achieved accuracy was 94.8% and best R2 was 96.0%. In addition, the model can be used to automatically exclude non-standard-size eggs and eggs with exterior issues (e.g., calcium deposit, stains, and cracks). This detector is among the first models that perform the joint function of egg-sorting and weighing eggs, and is capable of classifying them into five categories (intact, crack, bloody, floor, and non-standard) and measuring them up to jumbo size. By implementing the findings of this study, the poultry industry can reduce costs and increase productivity, ultimately leading to better-quality products for consumers.