Cargando…
Study on the Tea Pest Classification Model Using a Convolutional and Embedded Iterative Region of Interest Encoding Transformer
SIMPLE SUMMARY: This paper is mainly based on the tea disease leaves for image classification research, using a combination of convolution, iterative module and transformer in the form of a combination of the traditional convolution for local feature extraction advantage and transformer for global f...
Autores principales: | Zhan, Baishao, Li, Ming, Luo, Wei, Li, Peng, Li, Xiaoli, Zhang, Hailiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376105/ https://www.ncbi.nlm.nih.gov/pubmed/37508446 http://dx.doi.org/10.3390/biology12071017 |
Ejemplares similares
-
Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer
por: Zeng, Jianjun, et al.
Publicado: (2021) -
Locating Partial Discharges in Power Transformers with Convolutional Iterative Filtering †
por: Wang, Jonathan, et al.
Publicado: (2023) -
Classification of Tea Leaves Based on Fluorescence Imaging and Convolutional Neural Networks
por: Wei, Kaihua, et al.
Publicado: (2022) -
Convolutional Rebalancing Network for the Classification of Large Imbalanced Rice Pest and Disease Datasets in the Field
por: Yang, Guofeng, et al.
Publicado: (2021) -
Crop pest image classification based on improved densely connected convolutional network
por: Peng, Hongxing, et al.
Publicado: (2023)