Cargando…
Transformer Architecture and Attention Mechanisms in Genome Data Analysis: A Comprehensive Review
SIMPLE SUMMARY: The rapidly advancing field of deep learning, specifically transformer-based architectures and attention mechanisms, has found substantial applicability in bioinformatics and genome data analysis. Given the analogous nature of genome sequences to language texts, these techniques init...
Autores principales: | Choi, Sanghyuk Roy, Lee, Minhyeok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376273/ https://www.ncbi.nlm.nih.gov/pubmed/37508462 http://dx.doi.org/10.3390/biology12071033 |
Ejemplares similares
-
Estimating the Prognosis of Low-Grade Glioma with Gene Attention Using Multi-Omics and Multi-Modal Schemes
por: Choi, Sanghyuk Roy, et al.
Publicado: (2022) -
Deep Learning Techniques with Genomic Data in Cancer Prognosis: A Comprehensive Review of the 2021–2023 Literature
por: Lee, Minhyeok
Publicado: (2023) -
Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review
por: Lee, Minhyeok
Publicado: (2023) -
Deep Learning Approaches for lncRNA-Mediated Mechanisms: A Comprehensive Review of Recent Developments
por: Kim, Yoojoong, et al.
Publicado: (2023) -
An Ensemble Deep Learning Model with a Gene Attention Mechanism for Estimating the Prognosis of Low-Grade Glioma
por: Lee, Minhyeok
Publicado: (2022)