Cargando…
Allogenic Stem Cells Carried by Porous Silicon Scaffolds for Active Bone Regeneration In Vivo
To date, bone regeneration techniques use many biomaterials for bone grafting with limited efficiencies. For this purpose, tissue engineering combining biomaterials and stem cells is an important avenue of development to improve bone regeneration. Among potentially usable non-toxic and bioresorbable...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376284/ https://www.ncbi.nlm.nih.gov/pubmed/37508879 http://dx.doi.org/10.3390/bioengineering10070852 |
_version_ | 1785079232697729024 |
---|---|
author | Renaud, Matthieu Bousquet, Philippe Macias, Gerard Rochefort, Gael Y. Durand, Jean-Olivier Marsal, Lluis F. Cuisinier, Frédéric Cunin, Frédérique Collart-Dutilleul, Pierre-Yves |
author_facet | Renaud, Matthieu Bousquet, Philippe Macias, Gerard Rochefort, Gael Y. Durand, Jean-Olivier Marsal, Lluis F. Cuisinier, Frédéric Cunin, Frédérique Collart-Dutilleul, Pierre-Yves |
author_sort | Renaud, Matthieu |
collection | PubMed |
description | To date, bone regeneration techniques use many biomaterials for bone grafting with limited efficiencies. For this purpose, tissue engineering combining biomaterials and stem cells is an important avenue of development to improve bone regeneration. Among potentially usable non-toxic and bioresorbable scaffolds, porous silicon (pSi) is an interesting biomaterial for bone engineering. The possibility of modifying its surface can allow a better cellular adhesion as well as a control of its rate of resorption. Moreover, release of silicic acid upon resorption of its nanostructure has been previously proved to enhance stem cell osteodifferentiation by inducing calcium phosphate formation. In the present study, we used a rat tail model to experiment bone tissue engineering with a critical size defect. Two groups with five rats per group of male Wistar rats were used. In each rat, four vertebrae were used for biomaterial implantation. Randomized bone defects were filled with pSi particles alone or pSi particles carrying dental pulp stem cells (DPSC). Regeneration was evaluated in comparison to empty defect and defects filled with xenogenic bone substitute (Bio-Oss(®)). Fluorescence microscopy and SEM evaluations showed adhesion of DPSCs on pSi particles with cells exhibiting distribution throughout the biomaterial. Histological analyzes revealed the formation of a collagen network when the defects were filled with pSi, unlike the positive control using Bio-Oss(®). Overall bone formation was objectivated with µCT analysis and showed a higher bone mineral density with pSi particles combining DPSC. Immunohistochemical assays confirmed the increased expression of bone markers (osteocalcin) when pSi particles carried DPSC. Surprisingly, no grafted cells remained in the regenerated area after one month of healing, even though the grafting of DPSC clearly increased bone regeneration for both bone marker expression and overall bone formation objectivated with µCT. In conclusion, our results show that the association of pSi with DPSCs in vivo leads to greater bone formation, compared to a pSi graft without DPSCs. Our results highlight the paracrine role of grafted stem cells by recruitment and stimulation of endogenous cells. |
format | Online Article Text |
id | pubmed-10376284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103762842023-07-29 Allogenic Stem Cells Carried by Porous Silicon Scaffolds for Active Bone Regeneration In Vivo Renaud, Matthieu Bousquet, Philippe Macias, Gerard Rochefort, Gael Y. Durand, Jean-Olivier Marsal, Lluis F. Cuisinier, Frédéric Cunin, Frédérique Collart-Dutilleul, Pierre-Yves Bioengineering (Basel) Article To date, bone regeneration techniques use many biomaterials for bone grafting with limited efficiencies. For this purpose, tissue engineering combining biomaterials and stem cells is an important avenue of development to improve bone regeneration. Among potentially usable non-toxic and bioresorbable scaffolds, porous silicon (pSi) is an interesting biomaterial for bone engineering. The possibility of modifying its surface can allow a better cellular adhesion as well as a control of its rate of resorption. Moreover, release of silicic acid upon resorption of its nanostructure has been previously proved to enhance stem cell osteodifferentiation by inducing calcium phosphate formation. In the present study, we used a rat tail model to experiment bone tissue engineering with a critical size defect. Two groups with five rats per group of male Wistar rats were used. In each rat, four vertebrae were used for biomaterial implantation. Randomized bone defects were filled with pSi particles alone or pSi particles carrying dental pulp stem cells (DPSC). Regeneration was evaluated in comparison to empty defect and defects filled with xenogenic bone substitute (Bio-Oss(®)). Fluorescence microscopy and SEM evaluations showed adhesion of DPSCs on pSi particles with cells exhibiting distribution throughout the biomaterial. Histological analyzes revealed the formation of a collagen network when the defects were filled with pSi, unlike the positive control using Bio-Oss(®). Overall bone formation was objectivated with µCT analysis and showed a higher bone mineral density with pSi particles combining DPSC. Immunohistochemical assays confirmed the increased expression of bone markers (osteocalcin) when pSi particles carried DPSC. Surprisingly, no grafted cells remained in the regenerated area after one month of healing, even though the grafting of DPSC clearly increased bone regeneration for both bone marker expression and overall bone formation objectivated with µCT. In conclusion, our results show that the association of pSi with DPSCs in vivo leads to greater bone formation, compared to a pSi graft without DPSCs. Our results highlight the paracrine role of grafted stem cells by recruitment and stimulation of endogenous cells. MDPI 2023-07-19 /pmc/articles/PMC10376284/ /pubmed/37508879 http://dx.doi.org/10.3390/bioengineering10070852 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Renaud, Matthieu Bousquet, Philippe Macias, Gerard Rochefort, Gael Y. Durand, Jean-Olivier Marsal, Lluis F. Cuisinier, Frédéric Cunin, Frédérique Collart-Dutilleul, Pierre-Yves Allogenic Stem Cells Carried by Porous Silicon Scaffolds for Active Bone Regeneration In Vivo |
title | Allogenic Stem Cells Carried by Porous Silicon Scaffolds for Active Bone Regeneration In Vivo |
title_full | Allogenic Stem Cells Carried by Porous Silicon Scaffolds for Active Bone Regeneration In Vivo |
title_fullStr | Allogenic Stem Cells Carried by Porous Silicon Scaffolds for Active Bone Regeneration In Vivo |
title_full_unstemmed | Allogenic Stem Cells Carried by Porous Silicon Scaffolds for Active Bone Regeneration In Vivo |
title_short | Allogenic Stem Cells Carried by Porous Silicon Scaffolds for Active Bone Regeneration In Vivo |
title_sort | allogenic stem cells carried by porous silicon scaffolds for active bone regeneration in vivo |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376284/ https://www.ncbi.nlm.nih.gov/pubmed/37508879 http://dx.doi.org/10.3390/bioengineering10070852 |
work_keys_str_mv | AT renaudmatthieu allogenicstemcellscarriedbyporoussiliconscaffoldsforactiveboneregenerationinvivo AT bousquetphilippe allogenicstemcellscarriedbyporoussiliconscaffoldsforactiveboneregenerationinvivo AT maciasgerard allogenicstemcellscarriedbyporoussiliconscaffoldsforactiveboneregenerationinvivo AT rochefortgaely allogenicstemcellscarriedbyporoussiliconscaffoldsforactiveboneregenerationinvivo AT durandjeanolivier allogenicstemcellscarriedbyporoussiliconscaffoldsforactiveboneregenerationinvivo AT marsallluisf allogenicstemcellscarriedbyporoussiliconscaffoldsforactiveboneregenerationinvivo AT cuisinierfrederic allogenicstemcellscarriedbyporoussiliconscaffoldsforactiveboneregenerationinvivo AT cuninfrederique allogenicstemcellscarriedbyporoussiliconscaffoldsforactiveboneregenerationinvivo AT collartdutilleulpierreyves allogenicstemcellscarriedbyporoussiliconscaffoldsforactiveboneregenerationinvivo |