Cargando…

Next-Generation Sequencing Technology: Current Trends and Advancements

SIMPLE SUMMARY: Next-generation sequencing (NGS) is a powerful tool used in genomics research. NGS can sequence millions of DNA fragments at once, providing detailed information about the structure of genomes, genetic variations, gene activity, and changes in gene behavior. Recent advancements have...

Descripción completa

Detalles Bibliográficos
Autores principales: Satam, Heena, Joshi, Kandarp, Mangrolia, Upasana, Waghoo, Sanober, Zaidi, Gulnaz, Rawool, Shravani, Thakare, Ritesh P., Banday, Shahid, Mishra, Alok K., Das, Gautam, Malonia, Sunil K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376292/
https://www.ncbi.nlm.nih.gov/pubmed/37508427
http://dx.doi.org/10.3390/biology12070997
Descripción
Sumario:SIMPLE SUMMARY: Next-generation sequencing (NGS) is a powerful tool used in genomics research. NGS can sequence millions of DNA fragments at once, providing detailed information about the structure of genomes, genetic variations, gene activity, and changes in gene behavior. Recent advancements have focused on faster and more accurate sequencing, reduced costs, and improved data analysis. These advancements hold great promise for unlocking new insights into genomics and improving our understanding of diseases and personalized healthcare. This review article provides an overview of NGS technology and its impact on various areas of research, such as clinical genomics, cancer, infectious diseases, and the study of the microbiome. ABSTRACT: The advent of next-generation sequencing (NGS) has brought about a paradigm shift in genomics research, offering unparalleled capabilities for analyzing DNA and RNA molecules in a high-throughput and cost-effective manner. This transformative technology has swiftly propelled genomics advancements across diverse domains. NGS allows for the rapid sequencing of millions of DNA fragments simultaneously, providing comprehensive insights into genome structure, genetic variations, gene expression profiles, and epigenetic modifications. The versatility of NGS platforms has expanded the scope of genomics research, facilitating studies on rare genetic diseases, cancer genomics, microbiome analysis, infectious diseases, and population genetics. Moreover, NGS has enabled the development of targeted therapies, precision medicine approaches, and improved diagnostic methods. This review provides an insightful overview of the current trends and recent advancements in NGS technology, highlighting its potential impact on diverse areas of genomic research. Moreover, the review delves into the challenges encountered and future directions of NGS technology, including endeavors to enhance the accuracy and sensitivity of sequencing data, the development of novel algorithms for data analysis, and the pursuit of more efficient, scalable, and cost-effective solutions that lie ahead.