Cargando…

Development of a Polymicrobial Checkerboard Assay as a Tool for Determining Combinatorial Antibiotic Effectiveness in Polymicrobial Communities

The checkerboard assay is a well-established tool used to determine the antimicrobial effects of two compounds in combination. Usually, data collected from the checkerboard assay use visible turbidity and optical density as a readout. While helpful in traditional checkerboard assays, these measureme...

Descripción completa

Detalles Bibliográficos
Autores principales: Black, Caroline, Al Mahmud, Hafij, Howle, Victoria, Wilson, Sabrina, Smith, Allie C., Wakeman, Catherine A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10376321/
https://www.ncbi.nlm.nih.gov/pubmed/37508303
http://dx.doi.org/10.3390/antibiotics12071207
Descripción
Sumario:The checkerboard assay is a well-established tool used to determine the antimicrobial effects of two compounds in combination. Usually, data collected from the checkerboard assay use visible turbidity and optical density as a readout. While helpful in traditional checkerboard assays, these measurements become less useful in a polymicrobial context as they do not enable assessment of the drug effects on the individual members of the community. The methodology described herein allows for the determination of cell viability through selective and differential plating of each individual species in a community while retaining much of the high-throughput nature of a turbidity-based analysis and requiring no specialized equipment. This methodology further improves turbidity-based measurements by providing a distinction between bacteriostatic versus bactericidal concentrations of antibiotics. Herein, we use this method to demonstrate that the clinically used antibiotic combination of ceftazidime and gentamicin works synergistically against Pseudomonas aeruginosa in monoculture but antagonistically in a polymicrobial culture also containing Acinetobacter baumannii, Staphylococcus aureus, and Enterococcus faecalis, highlighting the fundamental importance of this methodology in improving clinical practices. We propose that this method could be implemented in clinical microbiology laboratories with minimal impact on the overall time for diagnosis.